Etude de capitalisation de 16 projets d’électrification rurale par mini-réseaux à Madagascar

ENVOL - Energies Nouvelles et Valorisation de Localités du Sud-Ouest de Madagascar

FOND PNC 07/2019-01

Auteurs : Camille André-Bataille, Nicolas Livache, Andrea Ranzanici

Mars 2020
TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>LISTE DES ACRONYMES</th>
<th>...</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREAMBULE</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>RESUME EXECUTIF</td>
<td>...</td>
<td>6</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>...</td>
<td>9</td>
</tr>
<tr>
<td>1.1. Les enjeux du secteur de l’électrification rurale à Madagascar ...</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1.2. L’évolution de l’ERD à Madagascar ..</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2. Méthodologie de l’étude ..</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2.1. Méthodologie de mise en œuvre de l’étude analytique ..</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2.2. Liste des projets étudiés ..</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2.3. Questions comparatives ..</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Conception initiale du projet ..</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Design et choix technique et technologique ..</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Modèle de gestion et d’exploitation ..</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2.3.4 Performance économique et profil de revenus ..</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2.3.5 Suivi et évaluation des impacts ..</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2.4. Canévas de grille d’évaluation des projets ..</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2.5. Limites et perspectives de l’étude ..</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>3. RESULTATS ET ANALYSE ..</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.1. Conception initiale du projet ...</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.1.1. Le projet est-il en adéquation avec les axes de développement économique et social nationaux, régionaux et locaux ? ...</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.1.2. Le projet est-il conçu à partir d’une identification, d’une évaluation et d’une analyse des besoins et attentes des bénéficiaires ? ..</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>3.1.3. Le projet rentre-t-il dans une procédure de développement prévue par l’Etat et respecte-t-il ses engagements ? ..</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3.2. DESIGN ET CHOIX TECHNIQUE ET TECHNOLOGIQUE ..</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3.2.1. Le projet a-t-il été conçu en adéquation avec les spécificités locales de la ressource énergétique et de la demande ? ..</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3.2.2. Les installations de production et distribution permettent-elles d’assurer une réponse dans le temps aux besoins des bénéficiaires des zones ciblées ? ..</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>3.2.3. Les moyens techniques initiaux mis en œuvre pas le projet sont-ils favorables pour assurer la qualité et la pérennité des services fournis ? ..</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>3.3. MODE DE GESTION ET D’EXPLOITATION ...</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>3.3.1. L’approche opérationnelle des projets permet-elle d’assurer la pérennité de ses retombées ? 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.2. Le projet dispose-t-il d’outils de suivi techniques, commerciaux et sociaux lui permettant d’atteindre ses objectifs ? ..</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>3.4. PERFORMANCE ECONOMIQUE ET PROFIL DE REVENUS ...</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>3.4.1. Les services sont-ils proposés à des tarifs moindres que si les clients devaient opter pour des solutions alternatives (ex : groupe diesel, système en autoconsommation) ? ..</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>
3.4.2. Les projets démontrent-ils une efficacité économique (rapport entre objectifs initiaux et résultats atteints) ? .. 55
3.4.3. Les projets démontrent-ils une efficience économique (rapport entre résultats atteints et moyens employés) ? .. 61

3.5. SUIVI ET EVALUATION DES IMPACTS .. 65
3.5.1. Le projet prévoit-il un plan de suivi/évaluation des impacts et résultats dans une optique d’amélioration continue ? .. 65
3.5.2. Quel est le niveau de satisfaction des bénéficiaires clefs – dont ménages, usagers productifs, élus locaux ? 66
3.5.3. Quels sont les effets immédiats et les perspectives d’impacts, directs et indirects, positifs et négatifs, du projet ? .. 68

4. CONCLUSIONS ET RECOMMANDATIONS .. 73
4.1 CONCEPTION INITIALE DU PROJET ... 74
4.2 DESIGN ET CHOIX TECHNIQUE ET TECHNOLOGIQUE .. 75
4.3 MODE DE GESTION ET D’EXPLOITATION.. 76
4.4 PERFORMANCE ÉCONOMIQUE ET PROFIL DE REVENUS ... 77
4.5 SUIVI ET EVALUATION DES IMPACTS ... 79

5. ÉTUDE DE CAS .. 81

6. ANNEXES ... 196
6.1. ANNEXE 1 : TABLEAU DE NOTATION.. 196
3.1. ANNEXE 2 : CALENDRIER DE L’ETUDE.. 199
3.2. ANNEXE 3 : QUESTIONNAIRES D’ENQUETES.. 201
LISTE DES ACRONYMES

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADER</td>
<td>Agence du Développement de l’Électrification Rurale</td>
</tr>
<tr>
<td>AGR</td>
<td>Activités génératrices de revenus</td>
</tr>
<tr>
<td>AP</td>
<td>Appel à Propositions</td>
</tr>
<tr>
<td>APD</td>
<td>Avant Projet Détailé</td>
</tr>
<tr>
<td>ASA</td>
<td>Angovo Soan’ Androy</td>
</tr>
<tr>
<td>BQC</td>
<td>Boulons Queue de Cochon</td>
</tr>
<tr>
<td>BT</td>
<td>Basse tension</td>
</tr>
<tr>
<td>CA</td>
<td>Chiffre d'affaires</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital d’investissement initial</td>
</tr>
<tr>
<td>CMPC</td>
<td>Coût Moyen Pondéré du Capital</td>
</tr>
<tr>
<td>CS</td>
<td>Candidature Spontanée</td>
</tr>
<tr>
<td>EDM</td>
<td>Électricité de Madagascar</td>
</tr>
<tr>
<td>ENDEV</td>
<td>Energising Development</td>
</tr>
<tr>
<td>ERD</td>
<td>Électrification Rurale Décentralisée</td>
</tr>
<tr>
<td>ESMAP</td>
<td>Energy Sector Management Assistance Program</td>
</tr>
<tr>
<td>EUR</td>
<td>Euros</td>
</tr>
<tr>
<td>FONDEM</td>
<td>Fondation Énergie pour le Monde</td>
</tr>
<tr>
<td>GIZ</td>
<td>Deutsche Gesellschaft für Internationale Zusammenarbeit</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>IRENA</td>
<td>International Renewable Agency</td>
</tr>
<tr>
<td>JIRAMA</td>
<td>Compagnie nationale d'eau et d'électricité de Madagascar</td>
</tr>
<tr>
<td>kWc</td>
<td>Kilowatt crête</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt par heure</td>
</tr>
<tr>
<td>LCOE</td>
<td>Levelized Cost of Electricity</td>
</tr>
<tr>
<td>MT</td>
<td>Moyenne tension</td>
</tr>
<tr>
<td>NB</td>
<td>Nombre</td>
</tr>
<tr>
<td>NPE</td>
<td>Nouvelle Politique de l’Énergie</td>
</tr>
<tr>
<td>O&M</td>
<td>Opération et Maintenance</td>
</tr>
<tr>
<td>ODD</td>
<td>Objectifs de Développement Durable</td>
</tr>
<tr>
<td>ONG</td>
<td>Organisation non gouvernementale</td>
</tr>
<tr>
<td>ONUDI</td>
<td>Organisation des Nations Unis pour le Développement Industriel</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operational expenditure ou Dépenses d'exploitation</td>
</tr>
<tr>
<td>ORE</td>
<td>Office de Régulation de l’Électricité</td>
</tr>
<tr>
<td>PCD</td>
<td>Plans de Développement Communaux</td>
</tr>
<tr>
<td>PDCA</td>
<td>Plan, Do, Check, Act</td>
</tr>
<tr>
<td>PEPP</td>
<td>Plateforme d’Échange Public-Privée</td>
</tr>
<tr>
<td>PESTEL</td>
<td>Politique, Économique, Sociologique, Technologique, Environnemental et Légal</td>
</tr>
<tr>
<td>PIC 2</td>
<td>Pôles Intégrés de Croissance et Corridors</td>
</tr>
<tr>
<td>PRC-ELEC</td>
<td>Programme de Révision du Cadre réglementaire – Electricité</td>
</tr>
<tr>
<td>PRD</td>
<td>Plans de Développement Régionaux</td>
</tr>
<tr>
<td>ProDÉCID</td>
<td>Projet de Développement Communal Inclusif et de Décentralisation</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaïque</td>
</tr>
<tr>
<td>SPV</td>
<td>Special Purpose Vehicle</td>
</tr>
<tr>
<td>TRI</td>
<td>Taux de rentabilité</td>
</tr>
<tr>
<td>TV</td>
<td>Télévision</td>
</tr>
</tbody>
</table>
Dans le cadre du projet ENVOL la Fondation Energies pour le Monde (FONDEM) a souhaité inclure un volet visant, au-delà de l’installation de deux mini-réseaux solaires dans la région d’Atsimo Andrefana, d’appréhender le fonctionnement de 16 installations similaires disséminées sur le territoire malgache. Alors que l’État malgache vise un changement d’échelle de l’électrification rurale décentralisée en faisant appel aux énergies renouvelables et locales, il nous a paru indispensable de tirer les leçons de 20 ans d’expériences dans ce domaine.

Elle a confié cette étude au bureau d’études MARGE dont la réputation dans le secteur de l’accès à l’électricité, n’est plus à faire.

Un atelier de restitution sera organisé à Antananarivo pour faire connaître aussi largement que possible les conclusions de cette étude. Qu’il soit l’occasion, pour toutes les parties prenantes, d’appréhender la complexité des démarches visant à un accès à l’électricité durable et la nécessité d’un travail collaboratif au cours du déroulement de tout projet.
RESUME EXECUTIF

Le programme d’Assistance à la Gestion du Secteur de l’Énergie (ESMAP) estime qu’en raison de la baisse des coûts des nouvelles technologies et d’un nombre croissant de politiques énergétiques favorables notamment dans les pays en développement et où les taux d’accès à l’électricité sont encore très faibles, les mini-réseaux alimentés par énergies renouvelables pourraient permettre de raccorder près de 500 millions de personnes dans le monde d’ici 2030. A Madagascar, ce sont plus de 18 millions de personnes qui patientent dans l’espérance de pouvoir un jour bénéficier d’un accès fiable et durable à une source d’électricité. Il est probable que le secteur privé sera le principal moteur de cette transition vers une énergie durable, offrant des solutions de haute qualité, rentables et innovantes pour atteindre les consommateurs du « dernier kilomètre » et participer au développement des économies locales.

Depuis près de deux décennies, le marché de l’électrification rurale décentralisée à Madagascar s’est considérablement développé et a vu émerger de plus en plus d’acteurs et d’initiatives orientés vers le développement et le déploiement de solutions modernes, compétitives et innovantes, tant dans les technologies et outils employés que dans les modes de gestion et de développement commerciaux mis en œuvre. Pourtant, le secteur n’est pas encore complètement mature et de nombreuses améliorations doivent encore être apportées pour permettre au secteur de devenir robuste et d’opérer un passage à l’échelle, tout en garantissant la fourniture de services fiables, abordables et durables pour les bénéficiaires ruraux.

La présente étude consiste en un retour d’expérience sur le secteur des mini-réseaux à Madagascar, et repose sur une série d’enquêtes et d’analyses multifactorielles auprès de 16 projets de mini-réseaux opérationnels dans 8 régions de Madagascar depuis, pour les plus anciens, plus de 15 ans. Elle couvre des projets privés et associatifs, et des technologies variées telles que la petite hydroélectricité, le solaire photovoltaïque (PV), la petite éolienne, la biomasse, et les systèmes hybrides. Elle permet de mettre en évidence 5 recommandations majeures qui ont pour objectif d’accompagner les projets et les parties prenantes dans la réduction des profils de risques des projets de mini-réseaux et de permettre ainsi la poursuite de la progression vers une mise à l’échelle pérenne et efficace sur le long terme.

1) La conception initiale des projets de mini-réseaux est une étape capitale pour garantir leur pérennité sur le long terme, et elle doit être réalisée en étroite collaboration avec un secteur public fort et opérationnel. La robustesse et la pertinence sociale, technique, économique et environnementale des projets de mini-réseaux se construisent dès la phase de conception, par la réalisation d’analyses détaillées des besoins énergétiques pour permettre des dimensionnements techniques adaptés, des choix technologiques cohérents et des choix opérationnels pertinents. Ces analyses doivent être documentées et partagées avec les agences ministérielles décisionnaires et d’exécution du secteur de l’énergie à Madagascar (Agence de Développement de l’Électrification Rurale, Office de Régulation de l’Electricité) et les élus locaux. Ces échanges garantiront la nécessaire acceptation du projet au niveau local ainsi qu’une bonne compréhension des enjeux par le secteur public dans son ensemble. Ils permettront par ailleurs de faire connaître et valoir les droits et responsabilités des opérateurs. Cette recommandation repose autant sur la proactivité des développeurs et opérateurs de mini-réseaux, que sur le secteur public qui doit réellement se saisir des enjeux et opportunités du secteur pour atteindre les objectifs ambitieux fixés par le Gouvernement mais aussi par les investisseurs.

2) Les choix technique et technologique doivent se conformer aux spécificités locales et aux standards internationaux, tout en garantissant un optimum opérationnel et économique sur le long terme. Madagascar bénéficie de ressources énergétiques renouvelables variées

1 ESMAP, Mini Grids for Half a Billion People: Market Outlook and Handbook for Decision Makers, 2019
2 A défaut de normes spécifiques inhérentes au contexte à Madagascar
(hydroélectricité, solaire PV, éolien, biomasse) et particulièrement abondantes sur l'ensemble du territoire. Cependant, les technologies hydraulique et photovoltaïque s'imposent comme les solutions les plus matures, les plus adaptées au contexte malagasy et les plus pertinentes pour l'atteinte des objectifs socio-économiques des projets de mini-réseaux. Pour garantir l'efficacité et l'efficience opérationnelles des installations sur le long terme et ainsi réduire les profils de risques et occurrences d'incidents, il est nécessaire que les développeurs et opérateurs sélectionnent des équipements fiables, conformes aux normes internationales, que les équipes locales peuvent maîtriser. Les équipes locales doivent disposer des compétences suffisantes pour que les installations respectent les règles de l'art. Enfin, les moyens numériques modernes doivent être disponibles pour faciliter la gestion quotidienne et le suivi à distance.

3 Quel que soit le modèle d'exploitation mis en œuvre, la clef de la réussite repose sur des transferts de compétences efficaces vers des ressources locales et sur l'utilisation d'outils digitaux pour faciliter les actions commerciales. Qu'elle soit internalisée par le privé ou déléguée à un acteur associatif ou coopératif au niveau local, la gestion d'un projet de mini-réseau repose avant tout sur des hommes et des compétences fortes. Compte tenu des défaillances des formations professionnelles et du manque de ressources qualifiées dans les zones rurales, les opérateurs sont encouragés à réaliser des formations robustes et continues pour accompagner leurs équipes, et les doter d'outils performants pour simplifier les activités commerciales en particulier (prépaiement, recouvrement, suivi des consommations) comme, par exemple, les compteurs intelligents.

Les projets de mini-réseaux accèdent à la rentabilité économique en priorisant les usages productifs dans leur mix de consommation et en proposant des tarifs innovants et compétitifs grâce l’apport de subventions justement calibrées. Le succès des projets de mini-réseaux repose en grande partie sur leur capacité à combiner des consommateurs d'ancrage, des consommateurs détaillants (épiceries, petites boutiques, revendeurs, etc.) et des consommateurs résidentiels (incluant les services publics), afin de garantir des recettes élevées et prévisibles, autant que des impacts forts. Cette démarche permet de renforcer le profil de revenus des projets, de diminuer les profils de risques financiers et de rassurer les investisseurs sur leurs retours annoncés. Elle doit être soutenue par des subventions qui agissent comme levier pour diminuer les tarifs de vente au kWh et renforcer la capacité des projets d’atteindre un équilibre économique rapide, sans pour autant retirer aux projets leur capacité d’autosuffisance – les subventions ne doivent pas être systématiques, mais doivent au contraire correspondre à des besoins réels et des objectifs ou résultats économiques compétitifs. Enfin, grâce à l’approche multi consommateurs et aux subventions octroyées, les projets doivent faire preuve d’innovation pour proposer des schémas tarifaires attractifs, adaptés et robustes, préférentiellement basés sur une tarification au kWh, adossée à des redevances fixes et des frais de raccordement uniques.

Les projets de mini-réseaux ne peuvent prouver leur efficacité, leur efficience, leur pertinence et leur durabilité que s’ils présentent des mécanismes structurés et documentés de suivi et évaluation des impacts et des résultats. Bien que chronophages et parfois mal maitrisés par les opérateurs et les parties prenantes du secteur, les processus de suivi et évaluation des impacts et des résultats sont capitaux pour permettre aux projets de capitaliser sur leurs apprentissages et d’opérer une démarche d’amélioration continue. Cette dernière revêt un intérêt particulier pour le secteur de l’électrification rurale, en pleine évolution, qui construit les bases de sa future mise à l’échelle. L’approche s’inscrit également dans une démarche de Performance Globale, particulièrement adaptée au secteur puisqu’elle met l’accent sur la combinaison des rentabilités économique, sociale, sociétale et environnementale.

Les recommandations formulées pourraient être renforcées par la conduite d’études et analyses complémentaires, sur les filières technologiques prometteuses à Madagascar et sur des projets clefs, sur une période longue et de manière itérative. Aussi, le secteur dans sa globalité, pourrait bénéficier de la sensibilisation des toutes les parties prenantes incluant les développeurs, opérateurs,
communautés rurales, élus locaux, agences ministérielles et partenaires techniques et financiers, pour garantir la bonne appropriation des recommandations et surtout, leur mise en œuvre.
1.1. Les enjeux du secteur de l’électrification rurale à Madagascar

Selon les prévisions de la Banque Mondiale, environ 70 % des nouvelles connexions à un système de fourniture d’électricité en zones rurales d’ici à 2030 devraient être assurées par des solutions énergétiques décentralisées. Les mini-réseaux constituent une part importante de l’ensemble des solutions énergétiques rurales, mais restent des investissements limités en raison d’une économie unitaire défavorable. Ces projets d’infrastructures résultent de plusieurs facteurs spécifiques aux sites d’intervention, au marché et à l’industrie, qui, cumulés, ont rendu difficile jusqu’à ce jour la mise à l’échelle des investissements dans les mini-réseaux en Afrique. Les besoins encore importants en subvention à l’investissement rendent difficiles le déploiement à grande échelle des projets de mini-réseaux.

A Madagascar, comme dans de nombreux pays en développement qui font face à une problématique de développement du secteur énergie, le déploiement structuré, croissant et pérenne de projets de mini-réseaux pour accroître l’accès à l’électricité en zone rurale est confronté à plusieurs problématiques. En premier lieu, les projets de mini-réseaux nécessitent un cadre et des instruments réglementaires adaptés, prenant compte de leurs spécificités et des contraintes du marché (valorisation des énergies renouvelables, facilitation d’accès au marché, sécurisation contractuelle des projets, articulation des projets avec le réseau national, etc.). Des organes ministériels et des agences d’exécution fortes sont nécessaires pour soutenir les opérateurs, accompagner les bénéficiaires et démontrer l’efficacité des démarches auprès des parties prenantes techniques et financières.

Ensuite, les projets de mini-réseaux nécessitent des appuis financiers importants mais structurés autour d’outils innovants et adaptés aux contraintes économiques des modèles. La majorité des investisseurs privés rechignent encore à prendre le risque d’investir dans des modèles non éprouvés et dont la relation risque-rentabilité ne correspond pas aux standards classiques, admis dans un environnement de finance traditionnelle. Pour couvrir les risques accrus, réels ou perçus, comparés aux risques usuels des projets publics de grande échelle, les investisseurs exigent souvent des taux de rentabilité (TRI) sur les fonds propres élevés, supérieurs à 20 % et des temps de retour sur investissement courts, généralement entre 4 et 7 ans. Or, le profil de performance financière des projets de mini-réseaux ne présentent souvent pas d’indicateurs de rentabilité élevés (généralement TRI inférieurs à 15 %) et les temps de retour sur investissement sont généralement alignés avec la durée de vie des projets qui dépassent bien souvent 10 années.

Le discours de l’industrie repose donc sur la capacité des modèles de mini-réseaux à réduire le Coût Moyen Pondéré du Capital (CMPC) des investissements réalisés. Le postulat de départ est qu’un financement moins cher (et/ou des coûts de développement de projet réduits) améliorera la viabilité des investissements dans les mini-réseaux et permettra d’attirer des investissements à l’échelle mondiale. Un financement plus abordable et des besoins en capitaux réduits peuvent être obtenus grâce à une variété d’interventions, telles que, mais sans s’y limiter : des instruments de financement basés sur les résultats (Result Based Finance), des subventions à l’investissement, des facilités de financement mixte, des facilités de préparation de projet, des facilités d’assistance technique, etc.

Si des acteurs publics forts, ainsi qu’une bonne articulation entre extension du réseau national et déploiement de réseaux indépendants privés, et des interventions de renforcement du marché sont nécessaires et bienvenues, elles ne semblent pas suffisantes pour transformer les investissements dans les mini-réseaux. Une attention particulière doit être portée sur le profil de risques des projets et

5 Banque Mondiale, More People Have Access to Electricity Than Ever Before, but World Is Falling Short of Sustainable Energy Goals, Mai 2019
6 ENDEV, Results-based Financing for Energy Access, Février 2018
la diminution de ces risques, tout au long de la durée de vie des projets, et sur toutes les composantes clefs des projets, qui sont particulièrement :

- la conception initiale du projet ;
- le design et les choix technologiques ;
- le modèle de gestion et d’exploitation ;
- la performance économique et le profil de revenus ;
- le mode de suivi et évaluation des impacts.

Le renforcement de cette chaine de valeurs à 5 composantes doit permettre de mitiger les risques du projet, d’améliorer le profil d’impacts et les retombées positives, de diminuer les coûts opérationnels et de consolider les facteurs de réussite et de durabilité sur le long terme.
1.2. L’évolution de l’ERD à Madagascar

De la libéralisation du secteur

Figure 1: Ligne de temps retraçant la mise en place des différents projets sélectionnés pour cette étude

7 « OP » pour opérateur exploitant à la date de collecte de données (2019)
De l'évolution des technologies et de la qualité des services

Si l’hydroélectricité est une technologie mature et fiable, elle ne peut pas être mise en œuvre dans tous les cas. Elle dépend naturellement de potentiels d’aménagement hydroélectrique, une limite rencontrée également par la technologie éolienne qui dépend de potentiels très localisés et par les développeurs Mad’Eole et FONDEM, à partir de 2010 dans le nord du pays pour Mad’Eole et dans le grand sud pour la FONDEM. A cela s’ajoutent les défis liés à l’intermittence des sources, à la fois journalière (technologie solaire) et saisonnière (éolien et hydro). Compte tenu de l’abondance de la ressource solaire, également bien répartie sur l’ensemble du pays, et compte tenu de la diminution des coûts de production des composants solaires au cours des dix dernières années, la technologie solaire photovoltaïque est devenue la solution la plus régulièrement utilisée pour répondre aux besoins de l’électrification rurale à Madagascar, à partir des années 2014/2016.

Un autre aspect important lié à l’évolution du secteur est la perception du service électrique par les usagers. Au cours de la première phase de déploiement (2010/2011), l’électrification est perçue comme un luxe permettant d’assurer quotidiennement un service minimum d’accès à l’électricité de l’ordre de 2h à 4h. Les consommateurs comprennent rapidement que l’énergie éolienne est intermittente dans la journée et ne permet pas une fourniture 24h/24, notamment pendant les périodes sans vent. Dans cette logique, l’essentiel est d’assurer un minimum de production d’électricité, stockée dans des batteries et restituée le soir de 18h à 22h pour les besoins en éclairage.

Ces évolutions dans les technologies s’expliquent notamment par une chute importante des prix du solaire photovoltaïque et l’amélioration de sa fiabilité, deux facteurs allant au détriment des technologies éolienne et hydroélectrique, qui restent trop liées à la spécificité des sites, aussi en termes des coûts de développement. Entre 2002 et 2016 le prix du Watt Crête photovoltaïque est passé de 6 €/Wc à 0,4 €/Wc. Mais à partir de 2014, grâce à baisse importante des coûts du solaire et en parallèle un maintien des coûts des batteries encourageant une consommation d’électricité en journée, période durant laquelle le coût du kWh est marginal, mais surtout grâce à l’apprentissage au niveau global et aux retours d’expériences des acteurs du secteur, progressivement l’électricité n’est plus perçue comme une finalité ou un luxe, mais bien comme un moyen de développement économique et social des zones rurales.

Du fournisseur d’électricité à l’acteur du développement local

Le secteur de l’électrification rurale doit progressivement faire évoluer ses réflexions pour faire de l’accès à l’électricité un moyen de développement (impact socio-économique) tout en assurant un équilibre économique. Progressivement et de plus en plus, le simple fournisseur d’électricité laisse place à un acteur de développement proposant une approche intégrée, encourageant la création et la mise en relation de structures de dialogue local (comité d’usagers, convention de partenariat avec la commune et les associations locales) et accompagnant les usagers dans leur consommation intelligente et productive de l’électricité.

8 Bloomberg New Energy Finance
Techniquement, il s’agit par exemple d’encourager les consommations d’énergie à des périodes de la journée durant lesquelles elle est le moins cher à produire. Dans le cas de l’énergie solaire, il s’agit bien entendu de la journée. Les consommateurs les plus susceptibles de consommer en journée ne sont pas les ménages mais les acteurs économiques locaux : pêcheurs, menuisiers, agriculteurs par exemple. Ne disposant initialement de pas ou peu d’énergie, ces acteurs ne sont généralement pas équipés en matériels électriques et pas formés à leur utilisation. Pour ces raisons, le gestionnaire de mini-réseaux doit accompagner la demande en électricité (consommation) aussi bien que l’offre (production).

Le fait de percevoir l’électricité comme un levier de développement en zone rurale a orienté certains opérateurs comme ANKA Madagascar ou des développeurs et promoteurs comme la FONDEM à faire évoluer leur approche en proposant des services de fourniture électrique accompagnés de services d’appui et de soutien à l’utilisation productive de l’électricité. L’objectif de cette intervention est double : i) maximiser l’impact social et économique des projets d’électrification rurale dans les territoires électrifiés et ii) augmenter la robustesse des modèles économiques de mini-réseaux.

Ainsi, depuis près de 20 ans, les objectifs des projets de mini-réseaux ont progressivement évolué pour passer d’un service de base répondant à des attentes sociales (éclairage, sécurité) à un service sophistiqué, créateur de valeur économique et booster de développement social et sociétal. Cette tendance a incité les opérateurs et les porteurs de projet à se renouveler et à faire évoluer leurs modèles économiques.

Du rôle essentiel du cadre réglementaire et des institutions

Cependant, pour être efficace, cette démarche réformatrice du cadre réglementaire doit encore être accompagnée de décrets d’application pour encadrer la mise en œuvre, et d’une restructuration du rôle, du fonctionnement, de l’organisation et des ressources de l’ADER. Ceci seulement permettra à cette agence de jouer un rôle moteur dans le développement de l’électrification du pays et d’accompagner ses innovations structurelles et ses projets en mutation ou en évolution (mode de gestion, tarification, passage au prépaiement, etc.) qui peuvent se voir ralentir dans leur marche vers le progrès.

9 http://www.ore.mg/Publication/Rapports/LettreDePolitique.pdf
Le retour d’expérience, nécessaire pour s’améliorer

Les cinq à six dernières années ont été marquées par une évolution des acteurs du secteur. Progressivement les organisations non gouvernementales (FONDEM, Mad’Eole) sont accompagnées d’entreprises sociales ou à impact telle que MAJIKA et EOSOL (devenue ANKA Madagascar) ou encore Energie Technologie suivies de près par des entreprises plus « classiques » identifiant l’électrification rurale comme une opportunité de marché comme Électricité de Madagascar (EDM) ou Sagemcom, réunies aujourd’hui en joint venture chez WeLight.

Ce document a pour objectif de mettre en évidence et de manière argumentée les bonnes pratiques mises en œuvre, et les leçons apprises par le secteur et ses acteurs, pour permettre d’identifier les principales pistes d’amélioration qui ont bénéficié au secteur ces 20 dernières années et qui permettront de développer et opérer de nouveaux projets d’électrification rurale plus performants et plus pertinents à Madagascar.
2. MÉTHODOLOGIE DE L’ÉTUDE

2.1. Méthodologie de mise en œuvre de l’étude analytique

La présente étude se concentre sur l’analyse de 16 projets de mini-réseaux menés à Madagascar et sur les voies d’amélioration et de consolidation des pratiques. Sur la base de la méthodologie PESTEL (voir encadré), elle a pour but d’identifier, de recenser et de capitaliser des conceptions institutionnelles, sociales, techniques, financières et environnementales en se basant sur l’analyse de différents schémas d’électrification rurale par mini réseaux déployés à Madagascar depuis ces dernières années.

Les résultats de l’étude doivent permettre d’identifier des facteurs clefs de réussite et les risques principaux pour permettre aux futurs opérateurs en mini-réseaux de construire les bases solides indispensables au développement de projets d’accès à l’électricité en zone rurale, mais aussi permettre aux actuels opérateurs de continuer de développer et d’améliorer leurs projets déjà opérationnels. Les résultats de l’étude se veulent donc concrets et réalistes et ils se basent sur une collecte de données transverses et illustratives des problématiques rencontrées au cours de la vie des projets. Néanmoins, les données collectées ne sont pas parfaitement exhaustives : les opérateurs enquêtés n’ont pas souhaité partager un certain nombre de données (particulièrement les données chiffrées, relatives aux modèles économiques, aux niveaux de dépenses, aux caractéristiques commerciales, etc.) et ces données n’étaient pas non plus disponibles ou partagées par les organes ministériels dont l’Agence de Développement de l’Electrification Rurale (ADER) et l’Office de Régulation de l’Electricité (ORE), soit par indisponibilité des données à leur niveau, soit par manque de réactivité dans le partage des données existantes.

L’étude s’est déroulée en plusieurs étapes consécutives, permettant de créer un contexte favorable à la collecte de données exploitables et à un travail analytique :

a. Préparation de l’étude ou phase de lancement : avant de commencer le travail d’analyse, il est important de comprendre au mieux le contexte du projet et des sites à analyser. La phase de lancement est destinée à permettre une compréhension du contexte et ainsi aborder la phase de collecte de données dans les meilleures conditions. Des questionnaires de collecte de données ont été élaborés et validés en amont des enquêtes terrain.

b. Phase de validation de la méthodologie et des outils d’enquête : la collecte de données intègre l’utilisation d’outils participatifs comme :

- Les focus group : réalisés en assemblées participatives et volontaires, les focus group permettent de recueillir des avis et données globales, représentatifs de tendances au niveau des localités dans leur ensemble. Les focus group sont des outils puissants pour obtenir un grand nombre de voix sur des sujets au périmètre large. L’objectif des focus group est de dessiner des tendances et de sonder les avis généraux. Les questions sont généralement ouvertes pour laisser place à l’expression du groupe. Certaines questions fermées permettent de préciser de manière quantitative des tendances ou réponses qualitatives. Les intervenants cibles sont : les opérateurs locaux, les usagers et bénéficiaires (résidentiels ou ménages, acteurs économiques, etc.) et les représentants de service public (institutions publiques type Mairie, CSB, écoles, etc.) ;

- Les interviews individuelles : réalisées en aparté entre l’enquêteur et un intervenant individuel issu des usagers, bénéficiaires ou des services publics. L’interview individuelle est un outil exhaustif de
collecte de données, très utile pour détailler des réponses quantitatives ou préciser des réponses qualitatives. L’enquête individuelle étant néanmoins chronophage, elle n’est réalisée que sur un échantillon pré-identifié d’intervenants.

c. Phase d’enquête terrain et de collecte de données : au préalable à chaque enquête stricto sensu (i.e. recueil de données), des séances informatives en plénières sont organisées avec les représentants des populations bénéficiaires pour faciliter le travail de collecte et insister sur l’importance du caractère participatif et constructif de l’approche. Ensuite, les enquêtes sont menées auprès des bénéficiaires résidentiels (échantillon de ménages), des opérateurs économiques et de développement, dont des usagers productifs (vivier exhaustif), des représentants des autorités administratives et traditionnelles (vivier exhaustif), ainsi que des représentants ou agents des opérateurs en mini-réseaux. Les données collectées sont ensuite compilées, classées et réorganisées pour préparer la phase d’analyse.

d. Phase d’analyse et d’identification des composantes clefs d’amélioration des modèles de mini-réseaux : pour analyser les données collectées et isoler des tendances de bonnes pratiques, clefs dans la démarche de mitigation des profils de risques des projets de mini-réseaux, une grille d’évaluation est élaborée autour des 5 composantes clefs de la chaîne de valeur des mini-réseaux et des questions comparatives sont formulées pour permettre de catégoriser le niveau de performance des projets et les efforts entrepris pour les dé-risquer.
2.2. Liste des projets étudiés

<table>
<thead>
<tr>
<th>PROJET</th>
<th>REGION</th>
<th>PROMOTEUR</th>
<th>OPERATEUR</th>
<th>DATE MISE EN SERVICE</th>
<th>TECHNO PRINCIPALE</th>
<th>CAPACITE INSTALLÉE</th>
<th>STOCKAGE</th>
<th>BACK UP DIESEL</th>
<th>MODE DE GESTION</th>
<th>MODE DE TARIFFICATION</th>
<th>MODE DE PAIEMENT</th>
<th>NB ABONNES (fin 2019)</th>
<th>INVESTISSEMENT INITIAL</th>
<th>SUBVENTION</th>
<th>DETTE</th>
<th>FOND PROPRE</th>
<th>APPORT DE LA COMMUNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankazomirotra</td>
<td>Vakinankaratra</td>
<td>-</td>
<td>Green Power</td>
<td>2009</td>
<td>Hydraulique</td>
<td>120 kW</td>
<td>non</td>
<td>non</td>
<td>Privé</td>
<td>20 kWh</td>
<td>Post</td>
<td>420</td>
<td>237 250</td>
<td>40%</td>
<td>48%</td>
<td>12%</td>
<td>0%</td>
</tr>
<tr>
<td>Ambolobozokely</td>
<td>DIANA</td>
<td>Mad’Ecole</td>
<td>Mad’Ecole</td>
<td>2010</td>
<td>Eolien</td>
<td>30 kW</td>
<td>oui</td>
<td>non</td>
<td>Communaire</td>
<td>12 Forfait</td>
<td>Post</td>
<td>70</td>
<td>135 000</td>
<td>98%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>Ambondro</td>
<td>Androy</td>
<td>FONDEM</td>
<td>ASA</td>
<td>2010</td>
<td>Eolien</td>
<td>12 kW</td>
<td>oui</td>
<td>non</td>
<td>Communaire</td>
<td>15 kWh</td>
<td>Post</td>
<td>93</td>
<td>280 000</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Ampasindava</td>
<td>DIANA</td>
<td>Anka Madagascar/Experts-Solaires</td>
<td>ANKA Madagascar</td>
<td>2017</td>
<td>Solaire</td>
<td>32 kW</td>
<td>oui</td>
<td>oui</td>
<td>Privé</td>
<td>20 kWh</td>
<td>Post</td>
<td>93</td>
<td>165 423</td>
<td>83%</td>
<td>0%</td>
<td>15%</td>
<td>2%</td>
</tr>
<tr>
<td>Andavadaoka</td>
<td>Atsimo Andrefana</td>
<td>-</td>
<td>ANKA Madagascar</td>
<td>2014</td>
<td>Solaire</td>
<td>60 kW</td>
<td>oui</td>
<td>non</td>
<td>Privé</td>
<td>25 kWh</td>
<td>Pré/Post</td>
<td>302</td>
<td>620 000</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>Andina</td>
<td>Amoron’i Mania</td>
<td>-</td>
<td>Gestion Communaire</td>
<td>2019</td>
<td>Hydraulique</td>
<td>58 kW</td>
<td>non</td>
<td>non</td>
<td>Privé</td>
<td>20 Forfait</td>
<td>Post</td>
<td>140</td>
<td>360 000</td>
<td>78%</td>
<td>0%</td>
<td>20%</td>
<td>2%</td>
</tr>
<tr>
<td>Andovoranto</td>
<td>Antsinanana</td>
<td>-</td>
<td>WeLight</td>
<td>2016</td>
<td>Solaire</td>
<td>11 kW</td>
<td>oui</td>
<td>non</td>
<td>Privé</td>
<td>nc kWh</td>
<td>Pré</td>
<td>70</td>
<td>150 000</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Antetzambato</td>
<td>Amoron’i Mania</td>
<td>FONDEM</td>
<td>Aditsara</td>
<td>2004</td>
<td>Hydraulique</td>
<td>42 kW</td>
<td>non</td>
<td>non</td>
<td>Communaire</td>
<td>15 kWh et forfait</td>
<td>Pré/Post</td>
<td>240</td>
<td>40 750</td>
<td>95%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Befandefra</td>
<td>Atsimo Andrefana</td>
<td>-</td>
<td>ANKA Madagascar</td>
<td>2014</td>
<td>Solaire</td>
<td>15 kW</td>
<td>oui</td>
<td>non</td>
<td>Privé</td>
<td>25 kWh</td>
<td>Pré/Post</td>
<td>50</td>
<td>200 000</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>Fandriana</td>
<td>Amoron’i Mania</td>
<td>-</td>
<td>HIER</td>
<td>2014</td>
<td>Hydraulique</td>
<td>560 kW</td>
<td>oui</td>
<td>non</td>
<td>Privé</td>
<td>30 kWh</td>
<td>Pré</td>
<td>1 768</td>
<td>1 000 000</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Ifotaka</td>
<td>Anosy</td>
<td>FONDEM</td>
<td>Toky Construction</td>
<td>2015</td>
<td>Solaire</td>
<td>10 kW</td>
<td>non</td>
<td>oui</td>
<td>Privé</td>
<td>15 kWh</td>
<td>Post</td>
<td>103</td>
<td>360 000</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Ivovona</td>
<td>DIANA</td>
<td>-</td>
<td>Mad’Ecole</td>
<td>2010</td>
<td>Eolien/Solaire</td>
<td>15 kW</td>
<td>oui</td>
<td>non</td>
<td>Privé</td>
<td>12 Forfait</td>
<td>Post</td>
<td>38</td>
<td>100 000</td>
<td>83%</td>
<td>0%</td>
<td>15%</td>
<td>2%</td>
</tr>
<tr>
<td>Mahaboboka</td>
<td>Atsimo Andrefana</td>
<td>GIZ</td>
<td>Energie Technologie</td>
<td>2017</td>
<td>Solaire</td>
<td>15 kW</td>
<td>oui</td>
<td>oui</td>
<td>Privé</td>
<td>15 kWh</td>
<td>Pré</td>
<td>110</td>
<td>114 300</td>
<td>77%</td>
<td>0%</td>
<td>23%</td>
<td>0%</td>
</tr>
<tr>
<td>Mahatalaky</td>
<td>Anosy</td>
<td>FONDEM</td>
<td>Toky Construction</td>
<td>2016</td>
<td>Solaire</td>
<td>15 kW</td>
<td>oui</td>
<td>non</td>
<td>Privé</td>
<td>15 kWh</td>
<td>Post</td>
<td>96</td>
<td>540 000</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Manerinerina</td>
<td>Boeny</td>
<td>-</td>
<td>CASIELEC</td>
<td>2013</td>
<td>Biomasse/Thermique</td>
<td>70 kW</td>
<td>non</td>
<td>non</td>
<td>Privé</td>
<td>15 kWh</td>
<td>Post</td>
<td>250</td>
<td>500 000</td>
<td>65%</td>
<td>0%</td>
<td>35%</td>
<td>0%</td>
</tr>
<tr>
<td>Marovato</td>
<td>Androy</td>
<td>FONDEM</td>
<td>ASA</td>
<td>2016</td>
<td>Solaire</td>
<td>10 kW</td>
<td>nc</td>
<td>non</td>
<td>Communaire</td>
<td>15 kWh</td>
<td>Post</td>
<td>72</td>
<td>252 000</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Figure 2: liste des projets étudiés
2.3. Questions comparatives

Afin d’identifier les bonnes pratiques et les moyens de mitigation des profils de risques des projets de mini-réseaux à Madagascar, les 5 composantes clefs de la chaine de valeur des mini-réseaux sont décomposées en question comparatives. Chaque question doit être posée pour chaque projet, afin de caractériser son niveau de force, d’opportunité, de faiblesse et de menace.

2.3.1 Conception initiale du projet

2.3.1.1 *Le projet est-il conçu à partir d’une identification, d’une évaluation et d’une analyse des besoins et attentes des bénéficiaires ?*

Compte tenu de leur nature d’infrastructures, les mini-réseaux requièrent généralement un capital d’investissement initial (CAPEX) relativement élevé, souvent hors de portée des communautés rurales bénéficiaires. Pour équilibrer le modèle financier du projet, les développeurs de mini-réseaux doivent s’assurer du profil de génération de revenus, lui-même dépendant des profils de consommation possible. Ainsi, l’identification, la catégorisation et la caractérisation des consommateurs et des profils de consommation sont particulièrement indispensables pour élaborer des projets de mini-réseaux adaptés à la demande énergétique locale et donc durables sur le long terme.
Les modèles de mini-réseaux étant très variés, il semble important que les projets définissent leurs objectifs en amont de toute opérationnalisation. Qu’ils soient orientés sur la fourniture d’électricité à des usagers productifs uniquement, aux ménages prioritairement, ou bien à tous les types d’usagers sans distinction, les projets de mini-réseaux ont tous en commun de devoir fournir des services à des usagers ou bénéficiaires, dans le respect d’une qualité et d’une continuité de service, tout en s’assurant des revenus stables et cohérents avec les ventes d’électricité. Cependant, en fonction des usagers ou bénéficiaires ciblés, comme des contraintes socio-économiques, environnementales, géographiques ou encore de marché, spécifiques aux localités d’intervention, les projets ne sont pas conçus de la même manière et les indicateurs de mesure de la réussite ne sont pas définis de la même manière.

Dans ce contexte, les développeurs doivent engager des moyens initiaux pour identifier et caractériser les profils de dynamique économique des sites d’implantation : si la plupart des développeurs vise des impacts de développement social à travers les services qu’ils fournissent en zone rurale, ils considèrent également que le développement économique local est un pilier pour la pérennisation de leurs projets. L’adéquation entre la solution technico-économique proposée et les besoins locaux permet de mitiger les risques techniques, commerciaux et donc financiers.

2.3.1.2 Le projet est-il en adéquation avec les axes de développement économique et social nationaux, régionaux et locaux ?

Une fois sélectionné pour son potentiel, sa maturité et sa dynamique de développement socio-économique, le site doit pouvoir être intégré dans une stratégie de développement local pour permettre une appropriation par les populations et un soutien par les élus du pouvoir public, ainsi que les notables locaux. Un projet, non reconnu comme d’utilité publique ou d’importance prioritaire pour le développement local, risque l’absence de soutiens et de fédération autour d’axes clefs comme : le développement d’infrastructures de communication ou de transport, la sécurisation foncière par la mise à disposition de terrains pour l’implantation des infrastructures de production, la facilitation pour l’intégration auprès des populations locales, la facilitation pour les démarches administratives, etc. Une investigation préliminaire à tout développement de projet est donc indispensable pour éviter des efforts et des investissements inutiles, voire dommageables.

Par ailleurs, l’intégration des projets de mini-réseaux dans les prérogatives de développement socio-économique permet également de générer des perspectives de mise à l’échelle des projets, par l’adjonction de plusieurs sites en installation en cascade, sur plusieurs années, garantissant ainsi aux développeurs de mini-réseaux, des perspectives de mutualisation de coûts et d’activités opérationnelles et des économies d’échelle, influant dès lors sur la pérennité financière des modèles économiques.

A un niveau plus micro, le projet doit en partie sa réussite à l’appropriation que s’en font la population bénéficiaire et les élus locaux. Même les meilleurs projets de mini-réseaux peuvent devenir des échecs.
faute d’intégration dans les communautés locales. Cette intégration et cette implication doivent généralement être à l’initiative des développeurs ou opérateurs de mini-réseaux, illustrant ainsi leur volonté de développer des projets et des services en alignement avec les besoins, les attentes, mais aussi les désirs des bénéficiaires. En réponse à ces initiatives, les élus et bénéficiaires locaux doivent pouvoir se saisir de responsabilités pour porter conjointement les projets, sans interférer dans les droits et obligations des opérateurs.

D’expérience sur site et à travers les études, il semble indispensable de créer un environnement favorable à l’expression des parties prenantes par la mise en place, par exemple, de : comités locaux pour l’électrification, réunissant des représentants des différentes parties prenantes locales (élus locaux, chefs traditionnels, opérateurs économiques, associations locales, résidentiels, etc.), réunions d’échanges périodiques entre opérateurs et représentants des différentes parties prenantes locales, recrutement de personnels issus des communautés bénéficiaires, partage des rapports d’activités, etc. Dans un sens, il s’agit de déconstruire des mythes ou des clichés, liés aux projets de mini-réseaux portés par des opérateurs privés : bien souvent, les populations locales associent ces projets à des actions commerciales, génératrices de profits, et se plaignent des niveaux de tarif appliqués en électrification rurale comparativement aux tarifs pratiqués par l’opérateur national, justifiant que les pouvoirs d’achat locaux sont souvent trop faibles pour absorber ces dépenses, qui, de surcroît, viendraient alimenter les poches d’acteurs déjà économiquement viables. Pris à partie, les opérateurs se retrouvent souvent isolés et le dialogue local se rompt. La transparence et l’échange d’informations avec les parties prenantes locales permettent bien souvent de créer un environnement sain et équitable.

2.3.1.3 Le projet rentre-t-il dans une procédure de développement prévu par l’état et respect-il ses engagements ?

L’État a élaboré une Nouvelle Politique de l’Énergie (NPE) pour l’horizon 2015-2030 qui prévoit des objectifs ambitieux en matière de développement de l’accès à l’énergie à travers le pays.

![Figure 4: chiffres clés des objectifs la NPE pour l’horizon 2015-2030](image_url)

Pour soutenir l’atteinte de ces objectifs, la nouvelle loi 2017-020 prévoit la reconnaissance des énergies renouvelables dans le mix énergétique national, la création d’un fournisseur d’électricité « verte » ou encore des régimes simplifiés d’obtention de contrat de délégation (régime déclaratif) pour les projets de faible capacité. Le cadre réglementaire à Madagascar et les textes régissant le développement du sous-secteur Électricité prévoient également, à travers les procédures d’électrification nationale, que les opérateurs privés doivent prioritairement développer des projets en réponse aux Appels à Projets (AP) internationaux, et, en l’absence de ces appels, peuvent soumettre des Candidatures Spontanées (CS). Même si ces dernières sont plus fréquentes que les AP, faute d’une planification nationale long terme, elles devraient pouvoir se conformer avec les Plans de Développement Régionaux (PRD) et Plans de Développement Communaux (PCD).
Quelle que soit la procédure d’application ou le régime suivi, tous les projets sont encouragés à développer et mettre en place des modèles économiques viables et durables, reposant sur un équilibre entre coûts et tarifs de vente de l’électricité, à la fois abordables et acceptables pour les populations bénéficiaires à faible pouvoir d’achat. L’approche « cost reflective », rendue possible par des instruments financiers complémentaires permet aujourd’hui de connaître avec précision les charges supportées par l’opérateur de mini-réseau.

Il revient à l’ORE, chargé de déterminer, publier et surveiller les prix d’électricité, de veiller à cet équilibre coût/recette.

Depuis la libéralisation du marché de la production en 1999, les opérateurs privés évoluent dans un environnement commun à la société nationale d’eau et d’électricité – la JIRAMA – qui fournit l’essentiel de ses services dans les pôles urbains et péri-urbains et quelques villes secondaires à travers le pays. Les contrats de délégation de service (par déclaration, autorisation ou concession) permettent la délimitation de périmètres d’activités pour chacun des opérateurs, garantissant ainsi aux opérateurs qui obtiennent une licence de production et de distribution, qu’aucun autre opérateur, même la JIRAMA, ne peut se positionner en concurrent sur ce même marché. Par ailleurs, à ce jour, le secteur a rarement été confronté à des situations d’interconnexion entre mini-réseaux privés et réseau national. Il semble donc important que les promoteurs de mini-réseaux s’alignent autant que possible avec les objectifs de la planification nationale et se déclarent aux autorités pour être enregistrés – et protégés.

2.3.2 Design et choix technique et technologique

2.3.2.1 Le projet a-t-il été conçu en adéquation avec les spécificités locales – de la ressource énergétique, de l’environnement ?

Dans le processus de conception technique d’un mini-réseau, plusieurs facteurs doivent être évalués. Particulièrement, on citera : le choix de la technologie de production électrique (et éventuellement de stockage), la perspective d’hybridation de sources complémentaires (ex : solaire/hydroélectricité ou sENR/GE), le dimensionnement du réseau, le choix de la configuration et le système de distribution, le système de comptage.

Le choix de la source de production électrique dépend généralement de la disponibilité de la ressource, du coût de revient de cette technologie, rendue sur site, et de l’adéquation de la ressource avec la demande. Les calculs sont multifactoriels et doivent considérer des éléments comme : les profils d’appel de charge et de consommation, le prix du carburant (pour les groupes de backup), la quantité et la périodicité des ressources renouvelables (ratio solaire, courbes de vent, débit d’eau, etc.), les contraintes techniques de certains équipements (par exemple : le comportement des équipements face à des milieux hostiles, comme la présence de sable ou de sel dans l’air exerçant des contraintes mécaniques et physico-chimiques sur les matières, l’abondance de limon ou de sable dans les cours
d'eau exerçant des contraintes mécaniques sur les équipements, etc.), les délais de mise en œuvre (développement et construction), la disponibilité de la technologie sur le marché national et les ressources humaines et matériel disponibles pour l'entretien et la maintenance. Dans le cas des systèmes solaires et éoliens, en raison de l'intermittence de la ressource, des systèmes de stockage sont généralement nécessaires pour pouvoir garantir une fourniture continue de service. Cependant, le choix des systèmes de stockage repose sur une analyse des facteurs comme la durée de vie (en cycles), la sensibilité à la température, le prix initial (à l’investissement), l'énergie spécifique, la possibilité de recyclage ou la taxation des importations.

Compte tenu des ressources renouvelables largement disponibles à Madagascar, les développeurs de mini-réseaux ont plusieurs options possibles. Dans cette étude, sur 16 projets enquêtés, 9 utilisent la technologie solaire (seule ou en hybridation), 3 utilisent la technologie hydraulique, 3 utilisent la technologie éolienne (seule ou en hybridation) et 1 utilise la technologie biomasse (en hybridation thermique).

Dans le cas de Fandriana, développé par HIER, le choix technologique s’est porté sur l’hydroélectricité en raison de la proximité d’une chute d’eau à fort potentiel. En raison de la variation du débit d’eau et de problématiques d’ensablement régulier, l’opérateur a choisi d’installer un groupe générateur diesel en hybridation pour garantir la fourniture d’un service maximal.

2.3.2.2. Les installations de production et distribution permettent-elles d’assurer une réponse dans le temps aux besoins dans le temps des bénéficiaires des zones ciblées ?

Le dimensionnement des installations de production, de stockage et de distribution est une étape critique dans la vie d’un projet de mini-réseau. Entre surdimensionnement et sous-dimensionnement, les développeurs de mini-réseaux sont souvent confrontés à une étape délicate, qui nécessite une compréhension fine et actualisée des profils de consommation et d’appels de charge. Dans le cas d’un surdimensionnement, les consommations sont inférieures à la production disponible et les revenus potentiels se montrent en deçà des attentes du modèle financier ; la rentabilité n’est pas atteinte dans les délais et conditions prévues, ce qui n’incite pas les investisseurs à prendre confiance dans le modèle. Dans le cas d’un sous-dimensionnement, les consommations sont supérieures à la production disponible, ce qui exerce une pression sur les infrastructures qui risquent plus probablement l’avarie ; les coûts d’entretien, de maintenance, voire de renouvellement, sont précoce voire augmentés, ce qui déséquilibre le modèle financier et accroît le sentiment de risque auprès des investisseurs. Dans un cas comme dans l’autre, le modèle financier est mis à mal et l’opérateur en difficulté. Le dimensionnement des installations doit donc prendre en compte les études de la demande et anticiper, quand c’est possible, son évolution qu’un suivi des consommations de localités similaires déjà électrifiées peut permettre d’anticiper.

2.3.2.3. Les moyens techniques initiaux mis en œuvre par le projet sont-ils favorables pour assurer la qualité et la pérennité des services fournis ?

La pérennité des projets d’électrification rurale repose également sur la capacité – et la volonté – des développeurs, opérateurs et investisseurs à doter les projets de matériels et équipements respectant des normes de qualité et des standards internationaux. Les conditions d’exploitation pouvant être particulièrement hostiles en milieu rural (chaleur, poussière, humidité) et les conditions d’exploitation parfois limitantes (compétences techniques faibles, problèmes d’accessibilité, etc.), les projets ont plus que jamais besoin de se reposer sur la fiabilité de matériels robustes et adaptés aux environnements d’exploitation.
Bien que la majorité des développeurs de mini-réseaux reconnaissent l'importance d'utiliser des matériels adaptés et de qualité, il n’est pas garanti qu’ils les emploient en réalité, faute de facilité d’approvisionnement. En effet, ne disposant pas de ressources qualifiées pour gérer des importations et dédouanements, certains développeurs préfèrent acheter des équipements sur le marché local de moindre qualité.

2.3.3 Modèle de gestion et d’exploitation

2.3.3.1. L’approche opérationnelle du projet permet-elle d’assurer la pérennité de ses retombées ?

La gestion opérationnelle et les activités de maintenance (O&M) sont des facteurs clefs pour assurer la durabilité des projets et garantir l’atteinte de leurs objectifs. L'O&M peut être réalisée en interne, par l’opérateur lui-même par des agents d’intervention sélectionnés, formés et accompagnés, originaires ou non des zones des projets, ou bien en externe, par une contractualisation avec :

- i) un organisme de services spécialisés (ex : un autre opérateur en mini-réseau ; une entreprise spécialisée dans les services techniques),
- ii) un groupe d’acteurs locaux, déjà présents dans la localité ciblée et disponible pour effectuer les interventions nécessaires.

Dans tous les cas, c’est de la qualité des intervenants, gérant les communications et les transactions après les mises en service, que dépendent la confiance des clients et des investisseurs. Une continuité de service incite les clients à investir dans des appareils électriques et le maintien des actifs en état de fonctionnement sur leur durée de vie prévisionnelle et répond aux attentes des investisseurs et les prépare favorablement à de nouvelles demandes de financements.

Par ailleurs, la présence d’agents d’intervention sur le terrain et le maintien d’échanges entre l’opérateur et les autorités communales, créent une interface locale qui permet une émulation autour des perspectives de développement des projets et d’opportunités de croissance. L’appui dans le développement d’usages productifs ou de création de chaînes de valeurs économiques structurantes pour les localités peut s’avérer très efficace. Les élus locaux, ayant accès à des aides financières publiques, peuvent bénéficier d’appui par des organismes à but non-lucratif ou des bailleurs, auxquels les opérateurs ne pourraient pas systématiquement prétendre.

2.3.3.2. Le projet dispose-t-il d’outils de suivi technique, commercial et social lui permettant d’atteindre ses objectifs ?

En plus des compétences techniques et des modes d’exploitation mis en place, les opérateurs disposent d’une variété d’outils modernes, souvent numériques et disponibles à distance sur plusieurs types d’interfaces, pour renforcer leurs capacités de suivi et d’analyse des composantes techniques, commerciales et même parfois environnementales. Parmi ces outils, on citera notamment :

- Les compteurs intelligents, qui permettent l’acquisition de données utiles sur les consommations et les consommateurs, et l’introduction de nouveaux modes de paiement comme le mobile money,
- Les interfaces de monitoring et contrôle des systèmes, qui permettent de suivre et de caractériser l’état et les paramètres des équipements de production électrique.

Ces outils, dont la disponibilité est récente et dont le prix était encore élevé il y a quelques années, sont devenus accessibles sur le marché. Cette tendance suit les besoins des opérateurs et les exigences des investisseurs qui cherchent à minimiser les risques et à optimiser les profils de dépenses. Grâce à ces outils, les opérateurs peuvent limiter leurs interventions physiques sur site et anticiper davantage les évolutions (ex : commerciales) ou les incidents (ex : techniques).
Par exemple, l’entreprise ANKA Madagascar a fait le choix de remplacer ses compteurs initiaux, installés il y a plus de 6 ans, par des compteurs intelligents plus modernes. L’investissement nécessaire a été intégralement supporté en propre, par l’entreprise.

Pour les projets déjà opérationnels, qui auraient été déployés avant l’apparition de ces outils (par exemple, le marché des compteurs intelligents est très récent – moins de 10 ans – et les premiers modèles ne disposaient pas d’autant de fonctionnalités que les modèles actuels), il est difficile de mettre en œuvre des moyens financiers pour des ajouts voire des remplacements. Faute de financements disponibles et dédiés à l’amélioration des projets au cours de leur durée de vie (les financements disponibles s’orientent davantage vers les nouveaux projets et les « nouvelles connexions »), les opérateurs de mini-réseaux doivent généralement prévoir des investissements sur fonds propres.

2.3.4 Performance économique et profil de revenus

2.3.4.1. Les services sont-ils proposés à des tarifs moindres que si les clients devaient opter pour des solutions alternatives (ex : groupe diesel, système en autoconsommation) ?

Les consommateurs ruraux sont soumis à la disponibilité de sources de production électrique et des moyens de leur distribution ; à Madagascar, dans la plupart des cas, le réseau national de la JIRAMA n’est pas présent. Aussi, pour disposer d’électricité, les habitants disposent de deux options : se raccorder à un mini-réseau privé, s’il existe, soit d’acquérir un générateur autonome (système solaire indépendant, turbine domestique, groupe thermique)10.

Dans la majorité des projets enquêtés dans cette étude, le premier constat est que les offres en mode forfaitaire s’avèrent souvent chères pour les faibles consommateurs et ne reflètent pas les coûts pour les plus gros consommateurs puisque les forfaits ne tiennent pas compte des volumes de consommation. Une alternative entre le forfait et le paiement à la consommation est la mise en place d’un forfait sur base de la puissance souscrite. Celui-ci permet de prendre en compte le nombre et la taille des appareils électriques utilisés, mais ne permet pas la prise en compte de la notion de durée d’utilisation (et donc d’énergie). Malgré cette limite, cette option est cependant intéressante car elle évite par exemple l’investissement dans des compteurs.

Par ailleurs, même en mode prépayé, si les tarifs de vente de l’électricité dépassent le coût moyen de production des groupes thermiques, ils ne sont plus compétitifs et peuvent entraîner une insatisfaction des consommateurs manifestée des vagues de déconnexion. La juste tarification est donc un élément crucial de viabilité des projets.

En général, les opérateurs en mini-réseaux sont amenés à réaliser des études de sensibilité sur leurs grilles de tarification pour s’assurer que les prix de vente soient compétitifs avec celui d’autres sources. Cependant, compte tenu du niveau d’inflation (environ 7 %) et du niveau d’actualisation (environ 9 %11, les modèles économiques des projets sont contraints de prévoir des évolutions fréquentes des tarifs, évolutions qui ne suivent malheureusement pas l’augmentation du pouvoir d’achat en zone

10 Les sources alternatives d’éclairage (type lampe ou kit solaire) ne rentrent pas en considération dans cette étude puisqu’elles ne sont pas directement substituables à un service fourni sur mini-réseau – les kits solaires, limités en puissance et énergie disponibles fournies en DC, ne sont pas comparables avec les caractéristiques des mini-réseaux (de quelques kW à plusieurs MW, courant AC) et les opportunités desservies (raccordement de ménages, comme d’infrastructures publiques ou de petites industries).
11 Banque Mondiale, 2019
rurale. Ces modalités de révision tarifaire doivent être prévues dans les modèles financiers partagés aux autorités et faire l’objet de revalidations au cours de la vie du projet.

Une incohérence structurelle subsiste donc dans les modèles qui couvrent ce risque en intégrant généralement des ratios élevés de subvention à l’investissement. Sans facilitation ou garantie apportée par l’Etat malagasy, les modèles de mini-réseaux restent en proie à des modélisations financières délicates et peu encourageantes. Les opérateurs et promoteurs de mini-réseaux doivent donc trouver l’équilibre entre tarification, taux de pénétration et niveaux de consommations unitaires.

2.3.4.2. Les projets démontrent-ils une efficacité économique (rapport entre objectifs initiaux et résultats atteints) ?

Un moyen de comprendre le degré d’accomplissement des objectifs poursuivis par les projets de mini-réseaux est de s’attarder sur la notion de Performance Economique, qui se décompose en Efficacité Économique et Efficacité Économique. Un projet peut être considéré comme efficace lorsqu’il atteint les objectifs qu’il s’est fixés, il peut être considéré comme efficient lorsqu’il minimise les moyens mis en œuvre pour les atteindre.

L’analyse de l’Efficacité Economique des projets de mini-réseaux repose donc notamment sur l’analyse croisée des paramètres liés à leur conception initiale par rapport aux profils de consommations identifiés et modélisés ainsi qu’à la capacité de maintenir les systèmes au plus haut niveau de performance technique pour atteindre les résultats escomptés. Lorsque la source de revenus est établie, les sources de financement du projet de mini-réseau doivent également être prises en compte. Le choix d’une source de financement pour les projets de mini-réseaux et les entreprises dépend du type de mini-réseau et du stade de développement du projet (pilote au stade initial vs. porte-feuilles de mini-réseaux plus tard).

Les enjeux liés à l’introduction de subventions dans les mix de financancements tiennent notamment au fait que les projets de mini-réseaux présentent des profils de risque et des coûts d’investissement élevés. Compte tenu des profils de revenus possibles en milieu rural, il est souvent nécessaire d’intégrer une part de financement non remboursable (subventions) pour faire levier sur les financements privés et leur permettre de proposer des tarifs attractifs. L’adéquation entre les financements et les performances des projets est la garantie d’atteindre leurs objectifs et de devenir robustes sur le long terme.

2.3.4.3. Les projets démontrent-ils une efficience économique (rapport entre résultats atteints et moyens employés) ?

L’évolution des modèles de mini-réseaux depuis plus de 2 décennies a démontré l’importance de l’introduction de consommateurs d’ancrage (usines locales ou clients commerciaux à la recherche d’énergie pour leurs machines12) pour garantir la viabilité et la pérennité des projets. Les mini-réseaux adoptant une approche ciblée autour de ce type de consommateurs, donnent généralement la priorité à l’identification et à la négociation d’un accord avec un gros consommateur (ex : hôtel, usine de transformation, chaine de froid, tour GSM, station-service, etc.), identifient ensuite et soutiennent le développement de petites entreprises locales, et enfin ciblent les ménages, les consommateurs résidentiels et les services publics. Bien que tous les projets de mini-

12 Miller Center for Social Entrepreneurship, Microgrids Playbook – Module 4 : Markets & Customers, 2018

Par exemple, l’opérateur WeLight oriente ses installations vers des sites qui disposent de tours GSM pour les raccorder au mini-réseau. ANKA Madagascar gère un projet d’accès à l’eau, intègre la mobilité verte et développe un projet innovant de combinaison énergie-agriculture à travers un programme appelé AgriGrid, dans plusieurs de ses sites.
réseaux ne soient pas construits sur ce modèle, ils se tournent néanmoins dans la majorité vers des usages productifs, compte tenu de la très faible consommation des usagers domestiques.

Sans soutien aux utilisations productives de l’énergie, les projets de mini-réseaux risquent de ne pas atteindre une demande suffisante et donc générer des revenus suffisants, condition nécessaire à leur viabilité financière. L’électrification de ces usagers productifs participe également au développement économique et social local, renforçant les impacts des mini-réseaux. Ainsi, de plus en plus de développeurs se tournent vers la combinaison des usages de l’électricité et sur la création de passerelles entre électrification et utilisation productive de l’énergie dans les secteurs de l’eau, de l’agriculture, de l’industrie ou du tertiaire.

2.3.5 Suivi et évaluation des impacts

2.3.5.1. Le projet prévoit-il un plan de suivi/évaluation des impacts et résultats dans une optique d’amélioration continue ?

Le suivi et l’évaluation s'avèrent déterminants dans l'élaboration des plans d'action (marketing, exploitation, financier, de gestion des ressources humaines, etc.) et, le cas échéant, dans leur réorientation. Ils participent à l’application d’un cycle d’amélioration continue :

![Figure 5: schéma du cycle d’amélioration continue](image)

La plupart des acteurs des projets enquêtés ne sont pas sensibilisés ou conscientisés à la pratique du suivi évaluation des impacts. Ils ne disposent donc pas ou peu d’éléments exploitables pour conduire une amélioration continue de leurs projets ou de leurs pratiques. Seuls les opérateurs ANKA Madagascar et Energie Technologie appliquent des recueils de données partiels mais non systématiques. Compte tenu de l’importance du suivi et de l’évaluation des impacts pour améliorer la performance et l’empreinte des projets, mais aussi garantir aux investisseurs le bien fondé de nouveaux projets et de nouveaux modèles basés sur des apprentissages et des progrès, il semble indispensable de sensibiliser et d’outiller les opérateurs, ainsi que les parties prenantes aux projets – dont les autorités concédantes – pour effectuer ces suivis et évaluations de manière systématique et structurée, sans pour autant en alourdir significativement la charge de travail.

2.3.5.2. Quel est le niveau de satisfaction des bénéficiaires clefs – dont ménages, usagers productifs, élus locaux ?

Compte tenu de l’importance de l’intégration des projets au niveau local, il semble indispensable que leurs développeurs ou opérateurs consacrent des moyens suffisants à la collecte des avis et remarques des usagers et bénéficiaires, à l’analyse de leurs commentaires et à leur intégration dans leurs plans d’action et d’amélioration continue. Faute de quoi, les projets risquent de montrer des taux élevés ou croissants de démotivation, de rejet, voire de déconnexion.
Le niveau de satisfaction des clients enquêtés est étroitement lié à la qualité des services fournis (pas de coupures ni de délestage, capacité de la centrale à répondre à la demande). À ce titre, les projets hydroélectriques et solaires sont les plus satis princessants en termes de taux de pénétration ou de déconnexion. À l’inverse, les avaries et arrêts ponctuels des services fournis par les projets éoliens et de biomasse ont des conséquences sur la disponibilité de l’électricité telles que les consommateurs en sont insatisfaits.

2.3.5.3. Quels sont les effets immédiats et les perspectives d’impacts, directs et indirects, positifs et négatifs, du projet ?

Les impacts positifs les plus flagrants et systématiques semblent être la possibilité de créer ou de renforcer des activités génératrices de revenus (AGR), utilisant l’électricité à des fins productives (création d’emplois, génération de revenus additionnels, augmentation des rendements), l’amélioration des conditions de sécurité dans les villages et les zones environnantes. L’éclairage public et la création d’emplois stables stimulent les jeunes à rentrer sur le marché du travail local. L’accès à l’électricité semble être perçu de manière très positive par les populations locales qui s’en saisissent généralement de manière constructive.

Cependant, certains projets ne répondent pas aux attentes des usagers, tant sur la qualité des services fournis que sur leurs modes de gestion. Par exemple, la mauvaise gestion des déchets ou matériels remplacés présente des risques pour l’environnement et les populations (batteries abandonnées dans la nature, câbles électriques et composants techniques éparpillés). Dans le cas de la technologie éolienne, les usagers se plaignent également de la pollution visuelle des installations. Enfin, dans certains cas isolés, les élus communaux se plaignent de ne pas bénéficier de retombées économiques tangibles (non-paiement de la taxe communale, non raccordement des services publics).

2.4. Canevas de grille d’évaluation des projets

Les projets enquêtés sont évalués par question comparatives et selon le barème de notation suivant :

- 1 : très insuffisant / <15 % des recommandations
- 2 : insuffisant / 15 %<x<30 % des recommandations
- 3 : moyen / 30 %<x<60 %
- 4 : satisfaisant / 60 %<x<80 % des recommandations
- 5 : excellent / >80 % des recommandations

L’évaluation et la notation sont des processus itératifs basés sur l’analyse quantitative et qualitative des résultats d’enquête. Les auteurs du rapport garantissent l’impartialité des évaluations mais précisent qu’il n’est pas possible d’effectuer une notation strictement neutre. En effet, un certain nombre de données ne sont pas quantifiables et les questions comparatives tiennent compte de plusieurs facteurs qui, une fois additionnés, conduisent à des notes moyennées.

Une fois les notations réalisées, le rapport propose de visualiser les résultats sous forme de graphique radar tel que présenté ci-dessous :
2.5. Limites et perspectives de l’étude

Il est important de rappeler que les tendances mises en évidence et les recommandations formulées dans cette étude sont le fruit d’une analyse réalisée à partir de données non exhaustives et non systématiques. La démarche est utile et permet d’identifier de nombreuses bonnes pratiques qui devraient permettre de réduire le profil de risques des projets de mini-réseaux à Madagascar. Cependant, afin de tirer des apprentissages plus robustes, mieux documentés et plus représentatifs des progrès réalisés par les projets, il conviendrait de sensibiliser les différentes parties prenantes (développeurs, opérateurs, communautés rurales, élus locaux, agences ministérielles, partenaires techniques et financiers) à l’importance d’effectuer des suivis et évaluations réguliers et de capitaliser les retours pour les partager avec le secteur dans sa globalité. Aussi, pour renforcer les apprentissages de cette présente analyse, il serait utile de conduire des études plus approfondies et de plus long terme sur les projets déjà enquêtés dans le cadre de cette étude.

Ces études complémentaires pourraient être menées par les autorités publiques, dont l’ADER, avec le soutien des partenaires techniques et financiers pour l’élaboration de cannevas d’enquête, la création d’outils et procédures simples de suivi et collecte de données auprès des opérateurs de mini-réseaux, la mise en place de campagnes de sensibilisation ou conscientisation des parties prenantes, etc.

Au cours de la présente étude, les enquêteurs ont rencontré des difficultés, notamment dans la collecte de données exhaustives, actualisées et exploitables. De manière générale, il a été constaté une grande méfiance des opérateurs vis-à-vis des enquêtes réalisées et l’ADER ne s’est pas montrée être moteur dans la mobilisation des délégataires pour répondre à cette étude. Les données financières ou les données relatives aux incidents techniques rencontrés sur les projets ont été difficilement partagées et ont nécessité plusieurs interventions de collecte d’informations. Ce rapport souhaite mettre l’accent sur une recommandation d’ordre organisationnel pour mieux préparer les phases d’études futures et favoriser la collecte de données parfaitement exploitable : l’ADER doit être mobilisée en amont des enquêtes et doit rester mobilisée tout au long des phases d’études pour garantir l’atteinte des résultats. Elle devrait également être en mesure de commenter, confirmer ou infirmer les éléments qui lui sont présentés, et donner réponse aux questions qui lui sont posées ; pour cela, elle doit être informée et à jour des données relatives aux projets qu’elle encadre.
Les historiques des projets enquêtés sont très diverses et leurs dates de réalisation couvrent une longue période (2001 à 2016), alors que le secteur de l’électrification rurale est en pleine évolution et que la réussite d’un projet repose sur une multitude de facteurs ; il est donc parfois difficile de mettre en évidence des tendances généralisées, abouties et justifiées. Cependant, malgré les limites et les difficultés rencontrées, ce rapport argumenté propose plusieurs axes constructifs et documentés d’amélioration des projets d’électrification rurale à Madagascar.
3. RESULTATS ET ANALYSE

3.1. Conception initiale du projet

3.1.1. Le projet est-il en adéquation avec les axes de développement économique et social nationaux, régionaux et locaux ?

L’ADER a été impliquée dans la préparation de cette étude via la sélection de sites à visiter. Pourtant plusieurs faits montrent que l’agence manque d’une visibilité claire sur les projets d’électrification rurale en cours mais aussi passés. Par exemple, l’ADER ne semblait pas informée que sur les 16 sites constituant cette étude, le site d’Ampasimbe n’avait jamais été mis en service. De ce fait, il n’a pas été intégré dans cette étude. Par ailleurs, des coordonnées GPS renseignées pour certains projets n’étaient pas correctement positionnées, engendrant des missions terrain inutiles et des délais supplémentaires dans le planning de l’étude. D’une manière générale, il a été difficile pour les enquêteurs de récolter les informations nécessaires et ce, malgré la présentation d’une lettre d’introduction de l’ADER et malgré les obligations réglementaires des opérateurs de lui remettre annuellement un rapport d’activité. Sur les 16 projets enquêtés seul 13 envoyaient régulièrement leur rapport d’activité à l’ADER – il faut noter la nette amélioration dans le processus puisque l’ADER n’a pas été informé de quelque année, lors d’une étude similaire, un seul opérateur sur vingt envoyait régulièrement ses rapports. Leur qualité est cependant très inégale : des données sont parfois manquantes, d’autres sont incohérentes entre elles et non vérifiables sans appui de l’opérateur. Ces différentes observations mettent en lumière les limites de suivi et d’accompagnement des projets par l’ADER qu’une plus grande présence sur le terrain permettrait de lever. L’existence d’une telle agence nationale en charge de la planification, en capacité de connaître et suivre les projets de son territoire, devrait pourtant être l’un des facteurs de réussite du secteur.

Les Régions et Directions Régionales de l’Énergie jouent un rôle fort de relais local de la politique nationale d’accès à l’électricité. Acteurs de proximité, elles peuvent être d’une aide efficace pour le montage des projets. Elles permettent de renforcer la cohésion des parties prenantes locales, de faciliter des démarches administratives ou la logistique (ex : mise à disposition de terrain pour le stockage de matériels ou containers). Cependant, sans que cela soit quantifiable, les Directions régionales de l’Energie sont encore peu sollicitées sur les projets d’électrification rurale, la majorité des échanges étant concentrée au niveau de l’ADER, aujourd’hui sans représentation régionale.

Les Communes (et Fokontany bénéficiaires), au-delà d’être les premiers bénéficiaires des projets d’électrification rurale, jouent aussi le rôle de maitre d’ouvrage local, même si formellement et selon la loi, c’est le Ministère de l’Energie et des Hydrocarbures qui joue ce rôle structurel pour tout le secteur. Elles sont généralement sollicitées pour la mise à disposition d’un terrain pour l’installation des unités de production électrique. Afin d’obtenir les contrats de délégation, il est demandé aux développeurs de projet d’établir une convention de partenariat entre la commune et l’opérateur, indiquant notamment les propositions de schéma et niveaux tarifaires, les rôles et responsabilités des parties prenantes, les services fournis et l’engagement des opérateurs à en assurer la continuité et la qualité. Les communes peuvent se saisir des conventions pour demander assistance à l’ADER afin de faire respecter les engagements de l’opérateur, en cas de défaillance. De manière générale, les élus locaux semblent peu impliqués et peu conscientisés sur leurs droits et leurs responsabilités, en tant qu’entité administrative, dans la préparation des projets ainsi que dans l’exploitation, alors que les populations bénéficiaires sont consultées pour leurs mises en place.
Le tableau suivant reprend pour chacun des sites les différentes actions réalisées pour impliquer les communautés bénéficiaires.

<table>
<thead>
<tr>
<th>Localités</th>
<th>Réunion Publique</th>
<th>Comité Local</th>
<th>Recrutements locaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivovona</td>
<td>Oui</td>
<td>Non</td>
<td>Oui</td>
</tr>
<tr>
<td>Ampasindava</td>
<td>Oui</td>
<td>Non</td>
<td>Oui</td>
</tr>
<tr>
<td>Ambolombozokely</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Ankazomiriontra</td>
<td>Oui</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Manerinerina</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Andina</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Fandriana</td>
<td>Oui</td>
<td>Non</td>
<td>Oui</td>
</tr>
<tr>
<td>Antetzambato</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Andovoranto</td>
<td>Oui</td>
<td>Non</td>
<td>Oui</td>
</tr>
<tr>
<td>Mahatalaky</td>
<td>Oui</td>
<td>Non</td>
<td>ND</td>
</tr>
<tr>
<td>Ifotaka</td>
<td>Oui</td>
<td>Non</td>
<td>ND</td>
</tr>
<tr>
<td>Marovato</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Ambondro</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Andavadoaka</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Befandeva</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Mahaboboka</td>
<td>Oui</td>
<td>Non</td>
<td>ND</td>
</tr>
</tbody>
</table>

Figure 7: tableau illustrant l’implication des communautés bénéficiaires

Sur la base des résultats illustrés dans le tableau ci-dessus, le graphique radar de synthèse ci-dessous a été réalisé. La notation repose principalement sur la réalisation ou non des réunions publiques, de la présence d’un comité local et du recrutement de personnel du village pour la mise en place et la gestion des infrastructures électriques.

Globalement, les projets enquêtés assurent tous avoir réalisé les actions citées ; cependant, les communes n’ont pas pu confirmer leur contenu et aucun rapport n’a été partagé par les opérateurs. Il est probable que les actions citées puissent être améliorées, notamment en mettant en place un système de capitalisation et de documentation, rendu disponible. A noter dans le cas de Befandefa (ANKA Madagascar), que les démarches ont bien été effectuées mais que la commune a refusé certaines des interventions par manque d’implication pour le projet.
3.1.2. Le projet est-il conçu à partir d’une identification, d’une évaluation et d’une analyse des besoins et attentes des bénéficiaires ?

Les projets d’électrification rurale par mini-réseaux ont été conçus pour électrifier un territoire à un horizon de 15 à 25 ans, durées habituelles des contrats de délégation en électrification rurale à Madagascar, même si dans la réalité, aucun partenaire financier ne peut s’engager sur une telle durée, mettant en péril les phases d’extension des capacités de production et distribution. Ce sont donc de véritables projets d’infrastructure. Ils structurent le développement d’un village ou d’une commune dans le temps et doivent permettre d’absorber et d’anticiper une évolution de la demande à long terme. L’une des grandes difficultés des projets de mini-réseaux est de prévoir cette demande. Cela nécessite un gros travail d’échanges et de dialogue avec l’ensemble de la population bénéficiaire.

La grande majorité des projets enquêtés a fait l’objet d’étude d’Avant-Projet Détailé (APD) et d’enquêtes terrain aussi bien au niveau des ménages que des activités génératrices de revenus (AGR) et entrepreneurs locaux. Il existe donc bien une phase d’étude de la demande dans laquelle l’ensemble des acteurs a été sollicité.

<table>
<thead>
<tr>
<th>Commune</th>
<th>Document Avant-Projet</th>
<th>Enquêtes terrain ménage</th>
<th>Enquêtes AGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivovona</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Ampasindava</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Ambolombozokely</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ankazomirio</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Manerinerina</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Andina</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Fandriana</td>
<td>Oui</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Antetezambato</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Andovoranto</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Mahatalaky</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Ifotaka</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Marvato</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Ambondro</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Andavadoaka</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Befandeva</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
<tr>
<td>Mahaboboka</td>
<td>Oui</td>
<td>Oui</td>
<td>ND</td>
</tr>
</tbody>
</table>

A noter que l’opérateur Mad’Eole est le seul à n’avoir pas souhaité répondre à ces questions. Cette étape étant cependant un prérequis au niveau de l’ADER, il est raisonnable de penser que tous les projets ont produit un document d’avant-projet. Néanmoins, il est impossible dans le cadre de cette étude de juger de la qualité, de l’exhaustivité et de la pertinence des différents éléments qui les composent puisque les documents n’ont pas été partagés et que l’ADER n’a pas fait de retour à leur sujet. Les enquêtes auprès des ménages semblent systématiques ce qui ne semble pas être le cas des activités génératrices de revenus.
3.1.3. Le projet rentre-t-il dans une procédure de développement prévue par l'Etat et respecte-t-il ses engagements ?

L'ensemble des 16 projets enquêtés s’inscrit dans le cadre des procédures de candidature spontanée défini par l’ADER\(^\text{14}\). On distingue cependant deux cadres, celui de l'initiative de la commune, accompagnée par une association, par exemple les projets de la FONDEM, réalisant une mission d’assistance à maitrise d'ouvrage et celui de la candidature spontanée à l’initiative de l’opérateur comme cela peut être le cas pour les projets de Mad’Eole par exemple.

Le tableau suivant mentionne, pour chacun des projets, la présence ou non d’ONG partenaire et/ou de programme d’assistance technique, ainsi que le rôle de l’opérateur (joue-t-il un rôle dans le développement du projet ou juste dans sa phase d’exploitation).

<table>
<thead>
<tr>
<th>Présence d’un appui technique</th>
<th>Rôle de l’opérateur dans le projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONG</td>
<td>Assistance technique</td>
</tr>
<tr>
<td>Ivovona</td>
<td>NON</td>
</tr>
<tr>
<td>Ampasindava</td>
<td>OUI</td>
</tr>
<tr>
<td>Ambolombozokely</td>
<td>NON</td>
</tr>
<tr>
<td>Ankazomirioitra</td>
<td>OUI</td>
</tr>
<tr>
<td>Manerinerina</td>
<td>OUI</td>
</tr>
<tr>
<td>Andina</td>
<td>OUI</td>
</tr>
<tr>
<td>Fandriana</td>
<td>NON</td>
</tr>
<tr>
<td>Antetezambato</td>
<td>OUI</td>
</tr>
</tbody>
</table>

\(^\text{14}\) https://ader.mg/#candidature_spontanee
Dans 65 % des cas, une ONG internationale a participé à la conception initiale et à la promotion des projets d’électrification rurale. Dans plus de 50 % des cas, les opérateurs interviennent seulement à la fin du développement des projets, au moment de son opérationnalisation après mise en service, soit à travers l’exercice de passation de marchés par appel d’offres, comme c’est le cas des projets de la FONDEM, soit par le biais de passation de marché en gré-à-gré, comme c’est le cas du projet de Manerinerina (Casielec). Les ONG internationales jouent souvent un rôle important et moteur dans la recherche de financement, la promotion de projets à impacts socio-économiques et l’assistance technique à la réalisation.

Par ailleurs, l’ensemble des projets enquêtés a fait l’objet d’une démarche d’obtention d’un contrat de délégation de services auprès du Ministère de l’Énergie et des Hydrocarbures, ministère de tutelle du secteur et autorité concédante. Les contrats de délégation délimitent les périmètres d’intervention des permissionnaires (i.e. exploitants délégataires), rappelle les cadres législatif et réglementaire qui régissent le projet, et sont souvent accompagnés d’une convention de partenariat entre la commune bénéficiaire et l’opérateur. Cette convention précise généralement les rôles et engagements des parties prenantes, les niveaux et structures des tarifs appliqués, les services à l’électricité proposés, les modalités de paiement des services électriques au niveau des infrastructures publiques (éclairage, école, centre de santé, etc.).

En cas de désaccord ou de conflit pendant l’exploitation, l’opérateur comme la commune bénéficiaire peuvent se saisir des contrats et conventions partenariales enregistrées auprès des autorités, et obtenir l’assistance de l’ADER, de l’ORE ou du Ministère de l’Énergie et des Hydrocarbures pour dénouer les situations. Dans la réalité, l’opérateur est généralement le seul à se saisir des autorités et à s’appuyer sur les contrats, et les élus locaux des communes bénéficiaires sont souvent soumis à son bon vouloir, par crainte de risquer la mise en péril des projets et le retrait de l’opérateur – et avec lui, des services électriques. Par exemple, dans la commune d’Ambolobozobe, où deux des trois fokontany de la commune sont électrifiés par l’opérateur Mad’Eole, les élus communaux ont tenté, avec l’aide du programme de Décentralisation de la GIZ (PRODÉCID), de trouver des solutions avec l’opérateur pour améliorer la qualité des services. L’ADER a aussi été sollicité sur ce dossier pour expliquer ses droits à la commune et trouver des pistes d’amélioration. Cependant, aucune solution tangible n’a été apportée. Cette situation illustre bien le genre de situations dans lesquelles les communes peuvent se retrouver, par manque de moyen et d’information.

A l’heure actuelle les projets ne respectant pas les engagements prévus dans les contrats de délégation sont Ivovona et Ambolobozokely (Mad’Eole), Ambondro (ASA) et Manerinerina (Casielec).

Concernant le respect des voies réglementaires pour la validation des tarifs par l’ORE, aucune information n’a été partagée par l’ORE ; il n’est donc pas possible de vérifier si les opérateurs se sont bien conformés aux processus en vigueur. Les remarques principales, mis en avant par les opérateurs,
reposent sur la lourdeur et les délais des démarches à mener pour réaliser un réajustement tarifaire. Par exemple, ANKA Madagascar déploie parfois une inertie du système et des procédures de l’ORE qui ralentissent les processus de révision tarifaire. A d’Ambolobozokely (Mad’Eole), le passage à une gestion communautaire du projet a engendré une hausse du forfait de 2,5€/mois à 3,75€/mois ; or, cette augmentation tarifaire n’a pas fait l’objet d’une validation par l’ORE ; il a été accepté uniquement localement.

Enfin, dans le cadre de leur exploitation, les opérateurs de projets de mini-réseaux doivent se conformer à l’obligation réglementaire de partager, sur une base annuelle, un rapport d’activité comportant des informations notamment sur les taux de pénétration, les niveaux de production, les volumes de kWh vendus, les incidents rencontrés et le nombre de coupures, les maintenances réalisées et à venir, etc. Seulement 13 projets sur 16 respectent leur engagement et partagent annuellement ces documents. Les 3 projets qui ne s’acquittent pas de cet engagement sont les projets d’Andina (gestion communautaire), Fandriana (HIER) et Antetezambato (Aditsara).

Le graphique radar ci-dessous propose une notation par projet, sur la base du respect des procédures réglementaires et de la qualité du reporting effectué auprès de l’ADER.

![Graphique radar](image.png)

Figure 12: note comparative question 1.3

3.2. DESIGN ET CHOIX TECHNIQUE ET TECHNOLOGIQUE

3.2.1. Le projet a-t-il été conçu en adéquation avec les spécificités locales de la ressource énergétique et de la demande ?

Particulièrement en électrification rurale, le choix de la technologie joue un rôle important dans la réussite du projet. Il est nécessaire de faire des choix techniques permettant aussi bien des coûts d’investissement rationnels, que des coûts d’exploitation et de renouvellement supportables par les bénéficiaires ruraux à faibles revenus. Les technologies doivent être adaptées à la demande et aux possibilités de production locale. Dans ce retour d’expérience, on distingue cinq types de production primaire d’énergie, qui peuvent ou non selon les cas, fonctionner ensemble en hybridation :

- Solaire ;
- Éolien ;
- Biomasse ;
- Hydraulique ;
• Thermique (principalement en back up).

Sur une partie des sites, un stockage par batterie au plomb (OPZV ou OPZS principalement) est assuré. Le tableau suivant reprend pour chacun des sites étudiés les technologies utilisées.

<table>
<thead>
<tr>
<th>Village</th>
<th>Promoteur</th>
<th>Solaire</th>
<th>Éolien</th>
<th>Biomasse</th>
<th>Thermique (GE)</th>
<th>Hydraulique</th>
<th>Batterie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivovona</td>
<td>Mad’Eole</td>
<td>Oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Ambolombozokely</td>
<td>Mad’Eole</td>
<td>Oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Ambondro</td>
<td>Fondem</td>
<td>Oui</td>
<td>oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Ampasindava</td>
<td>Majika (ANKA)</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Mahaboboka</td>
<td>Energie Technologie</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Manerinerina</td>
<td>Casielec</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>Ankazomiriotra</td>
<td>Power & Water</td>
<td>Non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
</tr>
<tr>
<td>Andina</td>
<td>Tany Meva</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Antetezambato</td>
<td>Fondem</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Fandriana</td>
<td>Hier</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Andovoranto</td>
<td>Welight</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Mahatalaky</td>
<td>FONDEM</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Ifotaka</td>
<td>FONDEM</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Marovato</td>
<td>FONDEM</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Andavadoaka</td>
<td>EOSOL (ANKA)</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>Befandeva</td>
<td>EOSOL (ANKA)</td>
<td>Oui</td>
<td>non</td>
<td>non</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
</tbody>
</table>

Figure 13: tableau présentant les différentes technologies utilisées sur chaque site

Dans près de 70 % des projets enquêtés, c’est l’énergie solaire qui est utilisée, s’inscrivant comme la solution technologique fiable et privilégiée pour garantir une production de base. Des systèmes de stockage de l’énergie par batteries sont employés dans tous les projets où la technologie utilisée est intermittente. Dans 3 des 11 projets (Ampasindava par ANKA Madagascar, Mahabobaka par Energie Technologie, et Fandriana par HIER), un groupe électrogène est utilisé en backup et fonctionne en moyenne 10% du temps. À Manerinerina (Casielec) et Ambolombozokely (Mad’Eole), le défaut de fonctionnement de la source de production électrique de base, respectivement biomasse et éolien, a forcé les opérateurs à utiliser le groupe électrogène, initialement prévu en backup, comme source principale ; les groupes sont utilisés jusqu’à 4h/jour pour garantir un service minimum en soirée.

Les projets ont tous été réalisés dans des zones où la source de production est adaptée à la ressource énergétique locale. Le soleil est disponible sur l’ensemble du territoire dans des proportions importantes. Les projets hydroélectriques sont développés sur les hauts plateaux dans le centre du pays tandis que les projets éoliens ont été développés dans les deux zones les plus ventées du pays, la région Nord et le grand Sud. Enfin, le projet Biomasse, bien qu’ayant connu des difficultés de la chaîne d’approvisionnement a été installé dans une zone à forte production de jujube.
Dans sa conception technique, le projet d’Ampasindava (ANKA Madagascar), développé avec l’ONG française Experts-Solidaires, a pris en compte la courbe de charge du village (forte demande en soirée) en proposant une double orientation est/ouest du champ photovoltaïque. Si cette conception fait perdre quelques points de rendements (2% à 5%), elle permet d’augmenter le temps de production solaire, réduisant par la même occasion les besoins en stockage et le taux de recyclage des batteries.

Par ailleurs, dans le cas du projet de Fandriana (HIER), c’est la disponibilité d’un site hydroélectrique potentiel important et la proximité de pôles de consommation significatifs qui a stimulé le développeur dans le choix de la technologie hydraulique.

La moitié des projets a opté pour une hybridation des sources de production. L’hybridation est conçue pour créer un mix énergétique et doit permettre de tirer parti des atouts de chacune des technologies hybridées. Le groupe électrogène peut être hybride à une technologie hydroélectrique pour assurer la production d’électricité dans les périodes d’été ; si le groupe électrogène est hybride aux technologies solaire ou éolienne, c’est surtout pour répondre à la demande lors des périodes sans soleil ou sans vent et durant des événements exceptionnels à forte demande, (nouvel an, fête nationale, etc.). Quelle que soit la source principale d’hybridation, le groupe électrogène peut être appelé soit pour répondre directement à la demande, soit pour charger des batteries (qui sont systématiquement présentes dans les projets solaires et éoliens). Le groupe électrogène est également utilisé pour absorber la demande croissante après plusieurs années d’exploitation, et en attendant des projets futurs d’extension des capacités renouvelables ; dans ce cas, il permet de garantir la continuité du service, sans utilisation excessive des batteries.

L’hybridation entre des sources renouvelables de production électrique est de plus en plus fréquente et s’illustre, dans le cadre de cette étude, dans les projets d’Iovona et Ambolobozokely (Mad’Eole) et Ambondro (ASA). Ces 3 projets ont initialement été conçus sur la base de la technologie éolienne et ont ajouté des capacités solaires seulement en complément, au cours de la vie des projets. A Ambolobozokely et Iovona, la production éolienne est trop défaillante pour permettre au solaire d’assurer la continuité de service. A Ambondro, l’éolienne fonctionne correctement. L’âge du projet laisse présager des batteries en fin de vie n’étant plus capables d’absorber l’énergie produite par l’éolien. Un projet de renouvellement des batteries et d’ajout d’un champ solaire de 15 kWc est en cours de réalisation actuellement à Ambondro. La qualité du service devrait largement augmenter. Ce projet est assuré par la FONDEM sous forme de subvention.

D’après les études et les analyses, les projets qui semblent les moins pertinents et durables vis-à-vis des spécificités locales sont les projets éoliens d’Ambolobosokely et Iovona (Mad’Eole) et le projet biomasse de Manerinerina (CASIELEC), compte tenu du manque de maturité des technologies employées et des problèmes opérationnels consécutifs, ainsi que le projet solaire de Befandefa (ANKA Madagascar) pour des raisons d’avantages commerciales (absence de demande en énergie).

Dans le cas des projets éoliens d’Iovona et Ambolobozokely, l’irrégularité du vent due aux rafales et aux changements d’orientation brusques, ainsi que la force du vent et du sable qu’il souleve avec lui, ont engendré un vieillissement prématuré des installations. Des études de vents plus approfondies et une collaboration plus étroite avec les fournisseurs auraient permis de limiter ces effets.

Photo 1: Centrale photovoltaïque d’Ampasindava -- ANKA Madagascar
A Manerinerina, le manque de maturité de la technologie, les compétences locales non ou mal formées et les pièces de rechanges inexistantes localement ont provoqué un arrêt rapide de la centrale. L’inertie de l’opérateur dans les réparations a provoqué une rupture dans l’approvisionnement en bois de jujube et la production électrique par biomasse n’est jamais repartie. Il y a donc dans la conception un manque dans la formation, dans le renforcement des compétences locales et dans la notion de service après-vente avec le fournisseur. Des garanties et missions d’appui technique auraient été des atouts pour limiter au maximum les risques du projet.

Note : face aux difficultés des marchés naissants et peu matures à Madagascar, comme c’est le cas de l’éolien et la biomasse, les développeurs et opérateurs de mini-réseaux peuvent se rapprocher de partenaires techniques locaux ou internationaux pour être accompagnés. Ces partenaires peuvent être issus du monde associatif (ONGs, associations locales, etc.), du secteur public (partenaires techniques et financiers) ou encore du secteur de la recherche et de l’enseignement. Par exemple, l’ONG française Nitidae (fruit de la fusion entre les ONGs Etc Terra et Rongead) œuvre depuis plusieurs années dans le développement et la diffusion de réservoirs biogaz, notamment dans le nord de Madagascar. Particulièrement active dans la recherche et la mise en œuvre de projets biomasse, elle agrège de nombreux acteurs autour d’elle comme des chercheurs et enseignants-chercheurs ou des partenaires techniques et financiers (Commission de l’Océan Indien – Union Européenne, Fondation Aga Khan, OSDRM ou Organisation de Soutien pour le Développement Rural à Madagascar, etc.). Au niveau international, l’entreprise française Mini Green Power enquête les opportunités de marché pour les centrales à biomasse et cible notamment Madagascar comme un terrain favorable à l’émergence de la technologie.

A Befandefa, la très faible demande énergétique remet en question le choix-même de vente d’électricité, au-delà de la technologie sélectionnée. Compte tenu de l’environnement économique très fragile et du manque de maturité des consommations, des solutions de pré-électrification, comme des kits solaires, auraient probablement été plus adaptées et plus rentables. Cependant, le projet de Befandefa a été développé conjointement avec le projet à Andavadoaka, fokontany de cette commune ; ce sont des raisons politiques qui ont contraint l’opérateur à proposer une solution d’accès à l’énergie par mini-réseau.
3.2.2. Les installations de production et distribution permettent-elles d’assurer une réponse dans le temps aux besoins des bénéficiaires des zones ciblées ?

Tous les projets enquêtés ont été conçus sur la base d’un service de fourniture électrique continu – 24H/24 dans la mesure du possible – à la population la plus large possible, tout en garantissant l’utilisation de l’électricité par des utilisateurs productifs.

Chacun des projets, et chacune des technologies employées, répond de manière spécifique aux besoins en énergie, compte tenu de ses spécificités d’utilisation, de localisation et d’approche technico-commerciale. La figure ci-dessous illustre la durée de fonctionnement du service sur les six premières années de fonctionnement, et pour chaque projet. La courbe verte, en trait plein, correspond à la moyenne pour l’ensemble des 16 sites enquêtés.

![Diagramme de la durée de fonctionnement](image)

Figure 15: graphique présentant la durée de fonctionnement de chaque site par année d’exploitation

D’une manière générale, on observe une baisse moyenne du service de 60% de la disponibilité entre l’année de mise en service et la sixième année de fonctionnement. Cette baisse est particulièrement constatée entre les années 4 et 5 de vie des projets. Cette échéance correspond souvent à une baisse des capacités des batteries. Les baisses les plus brutes sont constatées dans les villages d’Ivovona et d’Ambolombozokely (Mad’Eole) qui utilisent la technologie éolienne. Des pannes non réparées, à cause de difficultés financières ou encore d’indisponibilité de pièces de rechange, sont constatées sur ces deux sites, réduisant considérablement la qualité du service. A Ambondro (ASA), la qualité du service
s’est maintenue de manière variable suivant les saisons au cours des premières années, avant de chuter en année 9. Le vent dans le sud du pays est moins fort et plus stable que dans la région DIANA.

Sur les projets à dominante solaire, le nombre d’heures de fonctionnement est globalement plus important que sur les autres projets, mais chute lui aussi. La chute s’intensifie à partir de l’année 6 avec une perte de 10% de service par rapport à l’année précédente. Cette période correspond généralement à la période de renouvellement des batteries.

La centrale biomasse de Manerinerina (Casielec) a, quant à elle, réduit considérablement son service dès la deuxième année d’exploitation, passant de 14h par jour à 4h par jour, en raison des pannes qui ont engendré un manque de continuité dans l’approvisionnement en bois. Non enquêté dans ce retour d’expérience, le projet de la commune rurale de Befeta (région Haute Matsiatra) a lui aussi connu des problèmes d’approvisionnement en bois pour assurer le fonctionnement de sa centrale biomasse. La diminution des durées de fonctionnement est aussi la cause de difficultés des projets à soutenir dans le temps. Il est question ici de la durabilité de la technologie et des choix techniques.

Enfin, la technologie hydraulique, mature et bien maîtrisée à Madagascar, est souvent considérée comme un gage de qualité de service. Cependant le dimensionnement des ouvrages de génie civil est critique et doit notamment prendre en compte les périodes de crue qui peuvent être importantes à Madagascar — et renforcées par les impacts du Changement Climatique. Des études préalables approfondies sont nécessaires pour réaliser des ouvrages pérennes et capables de résister aux épisodes météorologiques exceptionnels. A Ankazomiriotra, les précautions n’ont pas été prises lors de la conception initiale et la centrale a été détruite par une crue exceptionnelle lors d’un épisode cyclonique.

Dans l’ensemble, l’utilisation d’un groupe électrogène en backup (comme le montre l’exemple de Fandriana) permet d’assurer le service lors des périodes d’été ou lors des interventions de maintenance (dans le cas de Fandriana, tous les samedis matin, la centrale doit subir un dessablage important pour permettre aux installations de production électrique de maintenir leur fonctionnalité).

A noter que les aspects de renouvellement de matériels et de provisions pour renouvellement en financement sont abordés en partie 4.4 du rapport. Ces aspects posent la question de la capacité des opérateurs et des modèles à provisionner le renouvellement du matériel, ou encore les possibilités offertes par les organes régulateurs pour ajuster les modèles et les tarifs de manière à anticiper les besoins futurs possibles, pour protéger au mieux les projets contre les aléas techniques et garantir ainsi leur viabilité sur le long terme.
Sur les aspects de distribution, seul le projet de Fandriana utilise de la moyenne tension en plus de la basse tension (BT). Le réseau MT de Fandriana fait 51 km pour 35 km de réseaux BT. Pour les autres projets, seule la basse tension est utilisée pour une taille moyenne de 3,5 km.

La densité moyenne d’abonnés par km de ligne BT est de 40 abonnés par km – cette valeur oscille cependant entre deux extrêmes de 15 abonnés par km jusqu’à 50 abonnés par km. Les projets d’Ankazomiriotra (Green Power) et Manerinerina (Casielec) ont des ratios bien au-dessus de la moyenne des 16 projets. Dans le cas de Manerinerina, malgré la faible qualité de service proposée par l’opérateur, la densité d’abonnés par km est élevée, illustrant le réel intérêt de la population pour l’accès à l’électricité.

Figure 17: Nombre d’abonnés par km BT

Tous les projets, sauf Ampasindava (ANKA Madagascar), disposent de poteaux en bois traités principalement localement. Le projet d’Ampasindava a bénéficié d’un financement de la part du programme Pôles Intégrés de Croissance et Corridors (PIC2) pour doter son réseau de distribution de poteau en béton. Pour tous les autres projets, l’utilisation de poteaux en bois traités localement implique une surveillance particulière et régulière en raison du pourrissement des pieds des poteaux pouvant engendrer la chute des poteaux et des câbles à même le sol. C’est le cas par exemple à Ambolobozokely (Mad’Eole) où les poteaux ne sont plus fonctionnels.

Photo 2: Réseau de distribution à Ambolobozokely (Mad’Eole)

Les poteaux bois traités localement apportent une solution bon marché (environ 30€/poteau) à la mise en place des réseaux de distribution BT mais leur durée de vie est faible (3 à 5 ans), ce qui conduit bien souvent à des coûts de maintenance additionnels pour les opérateurs. L’aspect visuel n’est également pas toujours conforme à l’état de l’art et leurs capacités de résistance ne sont pas garanties. Les
poteaux locaux sont généralement en eucalyptus pour les projets côtiers et en pin pour les projets situés sur les hauts plateaux. À l’opposé, les poteaux béton sont plus chers (300 à 350€/poteau) mais ils ne nécessitent aucun frais de maintenance. Il est cependant difficile pour un opérateur rural de manipuler les poteaux bétons qui sont très lourds et obligent à l’utilisation de camions grue. Le compromis semble être dans le poteau bois traité de manière industrielle. C’est le cas des poteaux installés dans les projets de Mahatalaky (Toky), Marovato (ASA) ou encore Ifotaka (Toky). Le prix de ces poteaux varie entre 50 à 100€/poteau. Ils sont facilement manipulables localement et ont une durée de vie de l’ordre de 8 à 12 ans. Un bémol cependant, aucune structure à Madagascar ne réalise de poteaux bois traité issus de zones de plantation prévues à cet effet. Les poteaux traités sont donc généralement importés d’Afrique du Sud, Europe ou Asie.

Quelle que soit la nature des poteaux, ils semblent généralement être bien entretenus et suivant des règles de sécurité approuvées. Lors des contrôles de conformité des projets, réalisés en amont de la mise en service, l’ORE est chargé de vérifier la bonne réalisation des réseaux de distribution et du respect des normes de sécurité. Cependant, au cours de l’exploitation, il est parfois constaté que les techniciens locaux réalisent des branchements non conventionnels, utilisant par exemple des chutes de câbles plutôt que des pinces d’ancrage et des Boulons Queue de Cochon (BQC) pour les raccordements des clients. En effet, sans stocks ou pièces de rechange prévus, les opérateurs présentent souvent des difficultés financières et logistiques à se doter de matériels normés.

Concernant les interventions de maintenance et leurs régularités, peu d’opérateurs indiquent réaliser une visite du réseau dans leurs procédures de maintenance. Le risque de dégradation de la qualité des poteaux parait élevé pour la majorité des projets enquêtés.

En termes de formation et d’habilitation, seul le personnel d’ANKA Madagascar dispose des certifications liées aux travaux en hauteur. Le personnel d’exploitation bénéficie également de formations de la part d’experts internationaux (ex : ENEDIS) dans le cadre de partenariats entre ANKA Madagascar, Experts-Solidaires et la FONDATION EDF. Sur la partie conception de réseau, l’ADER, MARGE et la GIZ ont proposé en 2019 des formations à la conception de mini-réseaux.

Enfin, la qualité et la régularité des interventions d’entretien et de maintenance, la structuration des opérateurs et leur écosystème de projet sont des facteurs qui semblent renforcer la qualité des services proposés. Ces points sont traités dans la partie 4.3 du rapport.

![Figure 18: Note comparative question 2.2](image-url)
3.2.3. Les moyens techniques initiaux mis en œuvre ne favorisent-ils pas le projet pour assurer la qualité et la pérennité des services fournis ?

La qualité des matériels installés est un des facteurs principaux de longévité des services de fourniture d’électricité dans le temps. Cette partie a donc pour objectif de s’intéresser aux moyens initiaux mis en œuvre pour la bonne réalisation des projets et d’étudier les effets dans le temps.

Les caractéristiques techniques de chacun des projets sont disponibles en annexe de ce document dans les études de cas. Dans l’ensemble des projets enquêtés, les matériels utilisés pour les projets d’électrification à Madagascar semblent de bonne qualité si l’on se réfère aux normes internationales et aux règles de l’art. Le tableau suivant propose une synthèse des marques installées principalement européennes.

<table>
<thead>
<tr>
<th>Désignations</th>
<th>Marques employées dans les projets enquêtés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panneaux Solaires</td>
<td>Asantys (Allemagne), Solarworld (Allemagne), Sillia (France), diverses marques (surtout Chinoises)</td>
</tr>
<tr>
<td>Éolienne</td>
<td>Fortis Alizé (Danemark)</td>
</tr>
<tr>
<td>Onduleur/chargeur</td>
<td>SMA (Allemagne), Studer (Suisse), Riello (Italie)</td>
</tr>
<tr>
<td>Onduleur PV</td>
<td>SMA (Allemagne), Steca (Suisse), Riello (Italie)</td>
</tr>
<tr>
<td>Batteries</td>
<td>Hoppecke (Allemagne), Exide (France), Rolls (Canada)</td>
</tr>
<tr>
<td>Groupe</td>
<td>Hyundai (Corée du Sud), FG Wilson (USA), SDMO (Allemagne)</td>
</tr>
<tr>
<td>Turbine</td>
<td>Heksa hydro (Indonésie), hammer flake miller (Chine)</td>
</tr>
<tr>
<td>Compteur</td>
<td>Sparkmeter (USA), SAGEMCOM (France), WASIONMETER (France)</td>
</tr>
</tbody>
</table>

Figure 19: Tableau présentant les principales marques de technologie mises en œuvre à Madagascar

Sur les projets enquêtés, les matériels techniques utilisés sont des points forts pour assurer la qualité et la pérennité des services fournis. Ce point est particulièrement mis en avant sur les projets portés par le FONDEM qui, via des mécanismes de subvention importants, proposent des systèmes de production avec des coefficients de sécurité importants permettant un allongement des durées de vie des appareils ainsi que du matériel de sécurité en stock pour assurer la prise en charge des premières pannes par le projet.

Pour les projets hydroélectriques, les turbines utilisées sont des turbines de technologie fiable et adaptée à l’hydrologie des sites, de type Pelton et Banki. Les rendements de ces turbines sont supérieurs à 85% et elles sont maitrisées à Madagascar. La mise en place d’un cursus de formation académique Master en Hydroélectricité à l’Université d’Antananarivo en partenariat avec l’ONUDI (Organisation des Nations Unies pour le Développement Industriel) vient renforcer cette dynamique et place l’électricité comme l’une des technologies phare des années à venir sur les projets d’électrification rurale à Madagascar, d’autant plus que près de 50% de l’énergie urbaine est assurée grâce à des barrages hydroélectriques.

Le radar suivant propose une notation de chacun des projets en prenant en compte la durée de fonctionnement offerte par les différents projets mais aussi les montants investis. Les projets initialement conçus par le FONDEM se distinguent principalement par leur haut niveau de réalisation technique permettant d’envisager une bonne qualité de service dans le temps.
3.3. **MODE DE GESTION ET D’EXPLOITATION**

En matière d’exploitation, les enjeux des projets d’électrification rurale résident dans leur capacité à maintenir un haut niveau de qualité de service dans le temps et à assurer un entretien, les réparations, un renouvellement ou une extension dans les règles de l’art, sans influer sur la continuité du service et sans affecter les indicateurs de performance économique et de viabilité. Si dans 65 % des projets enquêtés, c’est une ONG internationale qui a participé à la conception et au déploiement du projet, la mise en service effective des équipements ouvre les portes d’une seconde étape de la vie des projets dans laquelle la responsabilité est transmise aux acteurs locaux.

3.3.1. L’approche opérationnelle des projets permet-elle d’assurer la pérennité de ses retombées ?

Des techniciens locaux formés et accompagnés

Parmi les 16 projets enquêtés, 12 proposent un mode de gestion internalisé, effectué par des agents d’intervention mobilisés généralement en permanence au niveau local, mais parfois également détachés de manière mobile pour effectuer des interventions ponctuelles (c’est le cas de 3 projets sur 12). Ces agents sont principalement affectés à des tâches techniques (prévenir les interruptions de service et y répondre ; entretenir les équipements ; assurer la sécurité des matériels). Dans certains cas, les opérateurs optimisent la présence des agents pour mener des activités commerciales (stimulation de la demande, connaissance des consommateurs, service après-vente, vente de produits complémentaires, etc.).

Dans 4 des projets enquêtés, l’exploitation est assurée localement par des associations communautaires ou des groupes d’acteurs locaux, formés en groupements ou coopératives. Si cette démarche peut avoir un impact positif sur les dépenses opérationnelles, notamment sur les charges salariales (pas ou peu de charges imputées au projet), elle s’avère néanmoins risquée pour assurer la pérennité des systèmes et garantir le renouvellement des matériels. En effet, les compétences techniques spécifiques nécessaires à l’entretien de systèmes de production, de stockage et de distribution d’électricité sont absentes en zones rurales. Les 4 sites enquêtés fonctionnant de cette manière, font face à de nombreuses avaries, à une incapacité à anticiper les besoins techniques.
(renouvellement, réparation, prévention des incidents, extension de capacité, etc.) et donc à des difficultés pour satisfaire les besoins des consommateurs.

L’alternative observée sur les projets portés par les opérateurs privés (ex : Energie Technologie, ANKA Madagascar, Toky) consiste à recruter du personnel local, à le former et à l’accompagner dans ses activités quotidiennes. Ce choix semble porter ses fruits puisque ces projets disposent de taux de fonctionnement plus élevés que les autres projets. Cependant, même si le mode de gestion internalisé, reposant sur la présence d’équipes techniques spécialisées, semble être le plus pertinent, il convient de préciser que le facteur clef de cette réussite, est la formation et le transfert de compétences auprès des agents d’intervention : la formation de personnel local fait partie intégrante du projet pour s’assurer que l’exploitation est menée correctement. Pour le cas d’ANKA Madagascar et d’Energie technologie, les équipes du siège assurent régulièrement des activités de formation et de montée en compétence. Dans cette dynamique, Electricité de Madagascar (EDM), actionnaire avec Sagemcom de l’entreprise Weight, a lancé « EDM Academy » pour former des techniciens spécialisés sur les systèmes d’alimentation électrique et ses environnements.

Le tableau suivant reprend, pour chacun des sites, le type de gestion et la présence ou non de techniciens diplômés dans le domaine technique.

<table>
<thead>
<tr>
<th>Projet</th>
<th>Gestion</th>
<th>Technicien local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivovona</td>
<td>Privée</td>
<td>Non diplômé</td>
</tr>
<tr>
<td>Ampasindava</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Ambolombozokely</td>
<td>Privée puis communautaire</td>
<td>Non diplômé</td>
</tr>
<tr>
<td>Ankazoniriontara</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Manerinerina</td>
<td>Privée</td>
<td>Non diplômé</td>
</tr>
<tr>
<td>Andina</td>
<td>Communautaire</td>
<td>Non diplômé</td>
</tr>
<tr>
<td>Fandriana</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Antetezambato</td>
<td>Communautaire</td>
<td>Non diplômé</td>
</tr>
<tr>
<td>Andovoranto</td>
<td>Privée</td>
<td>Non diplômé</td>
</tr>
<tr>
<td>Mahatalaky</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Ifotaka</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Marovato</td>
<td>Communautaire</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Ambondro</td>
<td>Communautaire</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Andavadoaka</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Befandevia</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
<tr>
<td>Mahaboboka</td>
<td>Privée</td>
<td>Diplômé</td>
</tr>
</tbody>
</table>

Figure 21: tableau montrant le type de gestion et la qualification du technicien local par centrale

Sur les 16 projets enquêtés, le niveau de fonctionnement moyen des projets sur les 5 premières années d’exploitation a été analysé. Dans cette analyse le projet d’Ambolombozokely a été considéré comme en gestion privée car les premières années du projet ont été opérées sous ce format.
Figure 22: Comparaison des modes de gestion et des durées de fonctionnement

Le graphique ci-dessus compare les durées moyennes de fonctionnement des projets à gestion privée et de ceux à gestion communautaire. Les valeurs présentées sont des moyennes pour chacune de catégorie de projet. Dans l’ensemble, il est constaté que les courbes de disponibilité de service, en fonction du type de gestion, suivent des tendances similaires. La durée du service est globalement plus élevée dans le cas d’une gestion internalisée par un acteur privé que dans le cas d’une gestion au niveau communautaire ; cependant, étant donné que c’est le cas dès la première année du projet, il est admis que cela est l’effet de la phase de préparation du projet. Le graphique suivant met en parallèle la durée de fonctionnement du service et la qualification ou non des techniciens sur site.

Figure 23: Comparaison de la qualification des techniciens locaux et des heures de fonctionnement

Dans cette analyse, la différence de durée de fonctionnement et de son évolution dans le temps est plus marquée. La présence de techniciens qualifiés, ce qui est le cas dans 10 des 16 projets enquêtés, paraît être un vrai indicateur pour la garantie de la pérennité des services. Cette différence est particulièrement marquée à mesure que le projet avance dans le temps.

Le graphique radar suivant propose une notation prenant en compte la présence ou non de techniciens qualifiés par rapport à la qualité de service fourni. Les projets avec un faible niveau de service et sans compétence locale disponible présentent les notes les plus faibles.
3.3.2. Le projet dispose-t-il d’outils de suivi techniques, commerciaux et sociaux lui permettant d’atteindre ses objectifs ?

Le suivi et l’enregistrement de données comme piste d’amélioration

Le suivi technique des projets combine généralement un suivi local avec enregistrement quotidien d’informations collectées manuellement (ex : tension des batteries, relevé de compteur, etc.) avec un suivi à distance grâce à des systèmes d’enregistrement et de contrôle. Dans tous les projets enquêtés, le suivi local est réalisé par des gardiens et/ou des techniciens locaux. Il s’agit généralement pour ces personnels de remplir des fiches de suivi, manuellement dans la majorité des cas, et de consigner les informations dans des classeurs conservés localement. Si ces informations sont rarement utilisées pour analyser ou anticiper des incidents ou des avaries – car de trop faible granularité et prises de manière ponctuelle – elles permettent cependant généralement de constater des défaillances instantanées (ex : niveau de batterie faible, rupture de production, etc.). Dans de nombreux cas, le suivi à distance joue alors un rôle clef dans la réduction des coûts d’exploitation (OPEX) et l’amélioration de l’efficacité des systèmes. Parmi ces outils, on citera l’utilisation :

- de compteurs intelligents : ils permettent l’acquisition de données utiles pour assurer le suivi et la caractérisation des ventes, ce qui favorise le développement de stratégies commerciales efficaces et adaptées ; ils permettent également d’introduire des modes de paiement sécurisant, comme le prépaiement, ou le mobile money, qui réduisent notamment les risques liés au recouvrement ou aux mouvements de cash ;
- d’interface de monitoring et de contrôle des systèmes : les interfaces de gestion permettent de suivre en temps réel la charge, les schémas de consommation, la production ou encore l’utilisation des batteries. Ces outils s’avèrent utiles pour évaluer la demande et planifier la charge, et fournissent des informations capitales pour anticiper les besoins en renouvellement ou en extension. Ce sont donc de puissants alliés pour maîtriser les coûts et anticiper les besoins en financement.

Le suivi à distance intervient à plusieurs niveaux. Dans un premier temps, il permet aux opérateurs d’être en capacité, en cas de panne ou d’incident, d’avoir accès à des données permettant d’analyser le problème rencontré et d’y apporter des solutions rapidement. Cette collecte de données, réalisée localement, est dans la plupart des projets, envoyée du terrain vers les équipes techniques des sièges des structures gestionnaires. Ce mécanisme permet d’éviter, dans les cas d’incident léger, des
interventions physiques sur terrain et encourage les dépannages à distance et l’autonomisation des agents locaux. Cette approche vient compléter et soutenir les compétences des techniciens présents sur site, qui restent néanmoins utiles pour la réalisation des manipulations.

Dans un second temps, le mécanisme de suivi à distance encourage les démarches d’amélioration du service grâce à l’enregistrement et l’analyse de données clés. Il permet de lever les hypothèses sur les consommations des clients ou encore la production des centrales. Dans ces démarches d’analyse, il s’agit de permettre une montée en compétence et en expérience des agents et des opérateurs dans leur ensemble, pour prendre les décisions nécessaires en cours de projet, améliorer les projets existants et augmenter la qualité de la conception des projets futurs.

Les activités de collecte de données semblent faire partie des enjeux des années à venir en matière d’exploitation de projets de mini-réseaux. De plus en plus d’opérateurs à Madagascar tirent parti des solutions numériques et digitalisées pour optimiser les opérations et la gestion des projets, et pour garder le contrôle des opérations sur les systèmes. La faible couverture téléphonique des réseaux 3G perturbent néanmoins le déploiement généralisé de ces solutions et impliquent dans de nombreux cas, une collecte en deux étapes : i) collecte localement sur des supports numériques, puis ii) envoi des données à partir d’une zone desservie par les réseaux 3G.

Les projets d’ANKA Madagascar, Energie Technologie, Welight et ceux développés initialement par la FONDEM disposent de systèmes de collecte de données locaux aussi bien pour la génération d’électricité – généralement des solutions de suivi mis à disposition par les fabricants des onduleurs solaires –, que pour la distribution et la vente d’électricité grâce à des compteurs intelligents. Il est cependant constaté que les opérateurs ne réalisent pas ou peu d’analyse de ces données de manière régulière ou formalisée.

Mode de tarification et suivi des paiements

Les modes de paiement et les schémas de tarification sont généralement une source de questionnement intense pour les promoteurs et les porteurs de projet. On distingue différents schémas de tarification qui peuvent être combinés entre eux :

- La vente de forfaits proposant un paiement unique en fonction du nombre d’appareils électriques installés chez le client ou de la puissance souscrite ;
- La vente d’électricité au kWh, via des compteurs en pré- ou post-paiement ;
- Des redevances fixes pour la location de compteur ou pour l’installation du disjoncteur en tête d’habitation.

Sur les 16 projets enquêtés, 4 seulement appliquent une tarification au forfait. Il s’agit des projets de Ivovona et Ambolobozokely (Mad’Eole), le projet d’Andina (gestion communautaire) et celui de d’Antetezambato (Aditsara). Il s’agit principalement de projets en grande difficulté aussi bien technique que commerciale, notamment dans le cas des projets de Mad’Eole. Des problèmes de capacité de maintenance et de budgets disponibles ont été recueillis lors des enquêtes sur terrain. Mad’Eole applique un mode forfaitaire sur la base du type et du nombre appareils raccordés. L’évolution du nombre d’appareils dans les ménages est compliquée à suivre ce qui ne permet pas de faire évoluer les forfaits. L’opérateur ne disposant pas des moyens nécessaires pour en faire le suivi est en incapacité de faire payer le juste prix aux utilisateurs. La tarification forfaitaire, tel que pratiquée par Mad’Eole, implique un ticket mensuel d’entrée sur le réseau de 2,5 €/mois (forfait le plus bas) qui reste très cher pour les ménages aux revenus les plus faibles n’utilisant que 2 à 3 lampes par mois. A l’inverse, le forfait le plus élevé est de 3,75 €/mois, qui est très faible pour les opérateurs économiques qui vont payer un prix équivalent du kWh très faible de 0,13 €/kWh et 0,25 €/kWh en 2019 respectivement à Ivovona et Ambolobozokely.
Le projet d’Andina, mis en service en 2019, est difficile à comparer. Concernant Antetezambato, il s’agit d’un mix entre paiement forfaitaire et paiement aux kWh. Le nombre de kWh vendus n’est pas disponible mais le projet semble bénéficier de la technologie hydraulique à faible coût d’entretien mettant une pression plus faible sur la tarification.

Tous ces projets de facturation forfaitaire utilisent le post-paiement.

En effet, 3 de ces 4 projets ont été mis en service dans la première vague de projets d’électrification, à partir de 2000. A cette époque, les technologies de comptage de faible consommation, typique de projet d’électrification rurale, ainsi que les compteurs à pré-paiement, n’existaient pas sur le marché.

Les 12 autres projets analysés proposent une facturation au kWh, notamment grâce à l’utilisation de compteurs individuels. Le comptage est fait soit avec des compteurs « courants » communément utilisés sur les réseaux électriques citadins ou européens. Ces compteurs ne sont pas toujours adaptés aux consommations d’électrification rurale car les courants mesurés sont très faibles. Leurs valeurs ne sont pas mesurées par les compteurs citadins classiques. C’est une des raisons avancées par les équipes de Mad’Eole pour l’utilisation d’une tarification forfaitaire.

Les projets développés et mis en service après 2016 – ainsi que les projets à Andavadoaka et Befandefa (ANKA Madagascar), pourtant mis en service en 2014 – ont fait le choix de « nouveaux » compteurs adaptés aux faibles consommations de l’électrification rurale et présentant des fonctionnalités additionnelles, non disponibles sur les compteurs classiques. Le choix du paiement à la consommation semble se généraliser dans le pays.

En complément des deux modes de tarification, la majorité des projets applique un système de redevance fixe pour la location du compteur et fonction de la puissance souscrite. Ces charges fixes permettent de balancer le prix du kWh : il s’agit de trouver le bon équilibre entre la redevance et le prix du kWh. Certains projets ont cherché cet équilibre à travers une variation de la redevance en fonction des niveaux de consommation. C’est le cas des projets de Mahatalaky et d’Ifotaka (Toky) et de Marovato (ASA), proposant un prix du kWh fixe mais une redevance mensuelle variable en fonction du niveau de consommation. Le tableau suivant reprend les prix de redevance en fonction du type d’usage sur ces trois mini-réseaux.
autres : machine à coudre, ordinateur, TV/vidéo

<table>
<thead>
<tr>
<th>SES4</th>
<th>Éclairage, recharge téléphone, petite radio, Hifi/TV et froid</th>
<th>0,24</th>
<th>3,5 à 14,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réserve d’électricité (SESS)</td>
<td>Projet économique ou social spécifique</td>
<td>0,24</td>
<td>3,5 à 21,25</td>
</tr>
<tr>
<td>Éclairage public (EP)</td>
<td>Éclairage nocturne</td>
<td>0,24</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Figure 25: Tarification appliquée sur les projets BOREALE

S’il existe donc à Madagascar différents mécanismes de comptage et de facturation de l’électricité, il existe aussi deux manières de la facturer : le prépaiement et le post paiement. Parmi les 16 projets enquêtés, 12 projets proposent pour toute ou partie de leurs clients, le prépaiement. Cette solution, inexistante avant 2015 se développe de plus en plus sur le marché de l’électrification rurale et permet à l’opérateur d’assurer des taux de recouvrement élevés, et à l’utilisateur de consommer de l’électricité en fonction de son budget. Ce mécanisme limite les risques d’impayés qui ont par exemple été constatés sur les projets d’Ivovona et Ambolobozokely (Mad’Eole) – jusqu’à 24 mois d’arrière de paiement pour certains usagers ; ces situations peuvent mettre l’opérateur en difficulté de trésorerie pour opérer et les ménages dans un niveau d’endettement important. Le prépaiement permet d’éviter ces situations.

Le graphique suivant propose une analyse entre le taux de recouvrement, le niveau de non-satisfaction et les consommations des ménages et des AGR suivant le mode de facturation.

Figure 26: taux de recouvrement par mode de paiement

Les projets ayant mis en place le mode de prépaiement atteignent des taux de recouvrement de près de 90 %, largement supérieur aux autres modes de facturation qui présentent des taux de recouvrement plutôt de l’ordre de 50 à 60 %. Le prépaiement permet d’éviter les « copinages » courant en zone rurale entre les techniciens locaux et les utilisateurs qui peuvent demander des crédits ou des reports de paiement. Les consommations des ménages et des AGR sont légèrement plus faibles, environ 10 %. Cela renforce l’idée que les ménages et les utilisateurs sont vigilants à leurs dépenses et les adaptent à leurs revenus. C’est aussi un moyen qui permet de réduire le gaspillage d’énergie. Le taux de non-satisfaction parait légèrement plus élevé pour les projets en post-paiement.
Comme dans chaque situation, il existe des exceptions. C’est le cas du projet à Anakazomiriotra (Green Power) qui propose ses services en post-paiement, mais qui présente un taux de recouvrement d’environ 80%, car l’opérateur a mis en place un système efficace et a sensibilisé ses clients : les clients sont tenus de payer 6 jours après réception de la facture ; passé ce délai, l’opérateur relance une première fois. 7 jours après relance, si la facture n’est toujours pas payée, l’opérateur émet un avis de coupure effectif 3 jours après cet avis, et l’abonné devra payer 2,5 € pour se raccorder à nouveau. Cet exemple complète l’analyse en affirmant qu’une gestion stricte et rigoureuse est nécessaire pour assurer une bonne exploitation commerciale des projets d’électrification rurale, tout comme des actions de sensibilisation de la population rurale bénéficiaire.

3.4. PERFORMANCE ECONOMIQUE ET PROFIL DE REVENUS

3.4.1. Les services sont-ils proposés à des tarifs moindres que si les clients devaient opter pour des solutions alternatives (ex : groupe diesel, système en autoconsommation) ?

Pour atteindre les objectifs fixés par les projets et achever les résultats prévus dans leurs modèles économiques, les développeurs et opérateurs de mini-réseaux doivent s’assurer de la compétitivité de leurs offres par rapport aux solutions alternatives d’accès à l’électricité en zone rurale. Le mode de tarification mais aussi le niveau de tarifs et la qualité des services délivrés doivent être équilibrés et compétitifs.

En termes de niveau de tarifs appliqués, notamment en comparaison de sources alternatives de production électrique dont le générateur diesel en tête, 2 des 13 projets facturant au kWh proposent un tarif de vente supérieur au coût d’un kWh produit par diesel en zone rurale15.

15 Note de calcul : considérant le litre de gasoil rendu sur site en zone rural à 1,25 €/L ; considérant également un facteur additionnel illustrant les coûts de maintenance, coût des lubrifiants et coûts de renouvellement de pièces moteur, fixé à 40 % ; considérant enfin le ratio 1/3 pour la production d’un kWh thermique par diesel ; le coût d’un kWh produit en diesel est d’environ 0,53 €.
Note : Dans le Figure 21, les tarifs « mono a », « mono b » et « mono c » désignent les différents tarifs monophasés appliqués par les opérateurs. Le maximum des tarifs monophasés proposés est de 3 pour un même site. C’est le cas à Befandefa et Andavadoaka (ANKA Madagascar). Aucun des projets enquêtés ne propose un tarif de vente au kWh pour les usagers triphasés à l’exception du projet de Green Power à Ankazomiriotra, qui propose un tarif unique de vente aux clients triphasés à 0,16 €/kWh, inférieur au coût du diesel sur site.

Si l’on exclut la valeur extrême du kWh dans le cadre du projet solaire à Andovoranto (WeLight), de 1 €/kWh, hors des fourchettes de tarifs validés par le Régulateur (ORE)\(^{16}\), les moyennes des tarifs de vente au kWh par technologie sont toutes inférieures au tarif moyen de référence du kWh produit par un groupe diesel indépendant et se présentent donc comme des solutions compétitives au niveau local. Parmi les projets enquêtés, les projets hydroélectriques proposent une moyenne de tarif au kWh la plus compétitive, à 0,18 €/kWh en moyenne puis les projets solaires à 0,33 €/kWh en moyenne. A noter cependant, et d’après les éléments cités précédemment, que les projets éoliens présentent de grandes difficultés opérationnelles et économiques, questionnant les tarifs appliqués. Au regard de la technologie biomasse, l’unique projet enquêté ne permet pas de tirer de conclusion spécifique sur le secteur et la technologie.

\(^{16}\) www.ore.mg
La plupart des projets subventionnés sont censés présenter des niveaux de tarifs plus bas à raison que le niveau de subvention augmente. C’est d’ailleurs l’un des arguments principaux avancés par les bailleurs et programmes de financement qui octroient des subventions à ces projets. D’après l’étude réalisée, il semble effectivement que les tarifs de vente au kWh (hors redevances fixes et autres tarifs forfaitaires) diminuent alors que le taux de subvention augmente. Parmi les projets enquêtés, 14 sur 16 ont bénéficié de subvention. Seuls les projets à Fandriana (HIER) et Andovoranto (WeLight) n’ont fait appel qu’aux apports en fonds propres.

Cependant, les tarifs proposés par les opérateurs sont très variables, tant dans leur niveau que dans leur structure. Certains projets, notamment les projets hydrauliques, proposent des structures tarifaires simples, composées d’un seul, parfois 2 tarifs, pour l’ensemble des consommateurs. La distinction peut être faite sur la nature du consommateur, connecté en monophasé ou en triphasé. Un seul projet hydroélectrique, celui d’Andina, à gestion communautaire, propose un tarif unique en mode forfaitaire, les autres appliquent au moins une vente au kWh. Les 8 projets solaires sont ceux qui présentent les structures tarifaires les plus sophistiquées :

- 2 projets proposent une structure tarifaire décomposée en fonction des horaires de la journée, pour refléter le coup de l’électricité produite, entre la ressource solaire et les batteries. Le tarif de jour est alors inférieur au tarif de nuit ; un troisième tarif a été introduit en début de soirée, entre les tarifs jour et nuit, pour permettre notamment aux abonnés domestiques de bénéficier des services à des conditions abordables, tout en permettant à l’opérateur de refléter au maximum ses coûts de production. C’est le cas des projets à Andavadoaka et Befandefa (ANKA Madagascar). La mise en place de cette structure tarifaire en 2016 a, selon l’opérateur, permis aux projets d’augmenter de 35 %/an ses revenus issus des ventes d’électricité ;

- 3 projets proposent une structure tarifaire simple pour ce qui concerne la vente au kWh, mais une structure tarifaire multiple en ce qui concerne les redevances. La tarification des
redevances compte de 8 à 13 tarifs différents, fixés en fonction de la consommation observée par client : des paliers de consommation mensuelle sont fixés, et les tarifs augmentent à mesure que les paliers sont dépassés. Ce mode de tarification repose sur la capacité à payer des plus gros consommateurs.

- 1 projet, Andovoranto (WeLight), propose une tarification simple avec un tarif unique au kWh et aucune redevance fixe. Cependant, ce mode de tarification n’a pas été présenté, selon l’opérateur, comme une logique économique relative ni à la technologie ni aux profils de consommation des clients.

Les projets éoliens et biomasse proposent majoritairement des structures de tarif simples et uniques, comme le modèle présenté à Andovoranto (WeLight).

L’analyse comparative des schémas tarifaires permet de mettre en évidence le lien entre l’application d’un schéma à multicomposantes – constitué d’un ou plusieurs tarifs de vente au kWh et d’un ou plusieurs tarifs de redevance fixe – et la satisfaction des bénéficiaires, traduite par l’évolution du taux de raccordement par projet.

Figure 31: Influence du mix tarifaire/redevance fixe sur le taux de déconnexion

Le graphique ci-dessus permet de tirer plusieurs conclusions :

- Les projets en mode forfaitaire, et sans aucun tarif au kWh ni redevance fixe, présentent des taux de déconnexion entre 46 % et 54 % (respectivement les projets à Ivovona et à Ambolobozokely, opérés par Mad’Eole) ;
- Les projets au kWh, mais sans redevance fixe, présentent des taux de déconnexion entre 10 % et 38 % (respectivement les projets à Manerinerina opéré par CASIELEC et à Andovoranto opéré par WeLight). Par ailleurs, si l’on se réfère à ces 2 projets, plus le tarif de vente au kWh est élevé, plus le taux de déconnexion l’est aussi.
- Les projets au kWh avec redevance fixe ne présentent pas de taux de déconnexion ;
- Les projets combinant la vente d’électricité au kWh et en mode forfaitaire, avec des redevances fixes, ne présentent pas de déconnexion. C’est le cas du projet à Antetzambato exploité par la coopérative Aditsara.

Par conséquent, selon l’étude réalisée, il semble plus approprié de concevoir des schémas de vente incluant au moins une vente du service adossée au kWh, combinée à des tarifs de redevance fixe, pour correspondre aux besoins et contraintes des usagers et garantir un niveau de raccordement minimal et croissant. Cependant, les informations disponibles ne permettent pas de conclure sur le niveau de fixation de ces redevances fixes, ni sur la variété de ces redevances.
3.4.2. Les projets démontrent-ils une efficacité économique (rapport entre objectifs initiaux et résultats atteints) ?

Un moyen de comprendre le degré d’accomplissement des objectifs poursuivis par les projets de mini-réseaux est de se baser sur la notion de Performance Economique, qui se décompose en Efficacité Économique et Efficience Économique. Un projet peut être considéré comme efficace lorsqu’il atteint les objectifs qu’il s’est fixé. Il peut être considéré comme efficient lorsqu’il minimise les moyens mis en œuvre pour atteindre les objectifs qu’il s’est fixés.

L’Efficacité Economique repose ici notamment sur l’adéquation entre les objectifs stratégiques initialement définis et les résultats effectivement atteints. Elle fait donc écho aux profils de financement des projets appliqués pour garantir la viabilité sur le long terme.

Que les projets se présentent comme :
- i) des modèles privés avec une vente réalisée au kWh consommé ou en forfaitaire par lot de services, ou ;
- ii) des modèles communautaires où la gestion de l’exploitation est assurée par la communauté bénéficiaire elle-même, ou encore ;
- iii) des modèles hybrides, combinant l’interaction de plusieurs acteurs, soit à travers des véhicules structurés (ex : SPV\(^{17}\)) soit à travers des modes de gestion combinés (ex : modèles semi-franchisés ou franchisés),

les projets de mini-réseaux sont tous conditionnés par leur capacité à caractériser, anticiper et générer des profils de revenus, tout en maîtrisant et en anticipant un niveau de dépenses opérationnelles.

La Banque Mondiale propose plusieurs indicateurs de suivi de la performance dans son ouvrage, Monitoring Performance of Electric Utilities (2009), qui permettent de catégoriser les projets selon leur niveau d’efficacité et leur niveau d’efficience.

\(^{17}\) Special Purpose Vehicle
Note : les opérateurs enquêtés dans le cadre de la présente étude n’ont généralement pas souhaité partager leurs données économiques et financières. Certaines données ne sont par conséquent pas disponibles ; d’autres sont seulement partiellement disponibles et ne permettent pas une analyse comparative précise. Ces données ont également été demandées à l’ADER et à l’ORE, mais n’ont pas été partagées (faute de rapports de données exploitables fournis par les opérateurs annuellement – la majorité des opérateurs n’a pas fourni ses rapports annuels d’exploitation, et ceux fournis comportent plusieurs incohérences non vérifiables –, ou faute de réponse de la part de l’ADER et de l’ORE). En conséquence, l’analyse suivante se veut conservative et les conclusions qui en sont tirées ne peuvent être considérées comme précises.

Compte tenu des données disponibles pour évaluer l’efficacité des projets, des rapports simplifiés permettent de mettre en évidence certaines tendances. En moyenne sur les 16 projets enquêtés, le coût d’investissement unitaire par kW installé, toutes technologies confondues, s’élève à 12 535 € 19.

Un coût élevé par rapport aux coûts usuels du marché de mini-réseaux qui se situe autour de 3 623 € 20 par kW installé en 2018, qui peut s’expliquer notamment par :

- l’ancienneté des projets : 7 projets sur 16 ont été développés avant 2010, lorsque les coûts de fabrication des technologies étaient encore élevés et commençaient à peine à diminuer. A cette époque, les coûts admis par le marché international étaient d’environ 7 432 €/kW installé 21 ;
- des valeurs extraordinaires : 4 projets sur 16 (3 projets solaires et 1 projet éolien) se détachent significativement de la moyenne, en dépassant le seuil critique de 15 000 €/kW installé.

En ce qui concerne le rapport entre le coût unitaire d’investissement et la capacité installée, la technologie hydraulique semble être la plus compétitive.

Figure 33: coût unitaire d’investissement par kW en fonction de la capacité installée dans les projets hydro

Les projets hydroélectriques enquêtés présentent les coûts unitaires les plus faibles en moyenne : entre 970 €/kW installé à Antetezambato (Aditsara) et 6 250 €/kW installé à Andina (géré par la commune). A noter que ce projet d’Antetezambato n’a pas inclus d’investissement sur la partie distribution, pré-existant dans le village ; le coût unitaire n’est donc pas comparable aux autres projets qui les ont inclus. Par ailleurs, les projets à Ankazomirirotro (Green Power) et Fandriana (HIER) présentent des coûts unitaires relativement faibles pour des capacités installées relativement élevées, respectivement de 120 kW et 560 kW. Il semble donc que les coûts unitaires d’investissement par kW installé diminuent avec l’augmentation des capacités installées. Le seuil minimal optimal de capacité installée n’est cependant pas caractérisable avec les seules informations collectées, mais l’ONUDI 22 à Madagascar précise que les projets de petite hydroélectricité (<30 MW) pour l’électrification rurale, nouvellement développés, suivent des tendances d’économie d’échelle et proposent de plus en plus

18 Calculé sur une même base pour tous les projets : incluant les coûts d’investissements initiaux, les coûts de développement et les coûts opérationnels moyens
19 Moyenne calculée sur la base des données collectées
20 ESMAP, Des mini-réseaux pour 1 demi-milliard de personnes, 2019
21 ESMAP, Des mini-réseaux pour 1 demi-milliard de personnes, 2019
22 Organisation des Nations Unies pour le Développement Industriel www.unido.org
des capacités allant de quelques centaines de kW à plusieurs MW. L’ONUDI précise également que les coûts d’investissement pour les projets hydroélectriques en électricisation rurale sont à considérer avec précaution et recul23. Jusqu’à récemment, ces projets minimisaient les investissements initiaux pour limiter les risques liés aux investissements privés puisque les subventions étaient difficilement accessibles. Or, les niveaux d’investissement ainsi appliqués présentent deux risques majeurs :

- Le déploiement de projets non conformes avec les spécificités de la technologie hydraulique, selon l’état de l’art international et les bonnes pratiques du secteur24 : beaucoup de projets à Madagascar minimisent les enjeux des études de faisabilité et du dimensionnement pour élaborer des projets à des coûts compétitifs, mais qui ne respectent pas systématiquement des règles d’aménagement et de sécurité des installations. En conséquence, plusieurs de ces projets doivent faire face à des problèmes techniques, parfois d’envergure, et donc à des réinvestissements pour remettre en état leurs installations, et ce dans des délais inférieurs à la durée de vie théorique de la technologie. C’est le cas du projet à Fandriana (HIER) par exemple ; les enjeux de l’érosion due à l’orpaillage informel ont été mal évalués et induisent un ensablement régulier du barrage impactant significativement l’exploitation et donc les coûts opérationnels. Aussi, l’étanchéité de la chambre de mise en charge de l’aménagement était défaillante ; l’opérateur a dû réinvestir pour la remettre en état. Or ces coûts n’ont pas été inclus et ne rentrent pas dans le calcul du coût unitaire d’investissement.

23 Interview avec l’ONUDI Madagascar
24 ONUDI, Small Hydro Power Technical Guidelines, 2019,
installées de petite taille, inférieures à 15 kWc (PV) et des coûts de développement élevés (> 50 %), comme pour Ifotaka et Mahatalaky. Si aucun des projets solaires enquêtés ne présente de capacité installée significative supérieure à 100 kWc (PV), il est probable que des projets de plus grande envergure puissent proposer des coûts unitaires plus faibles, grâce à des économies d’échelle. A titre d’exemple, ANKA Madagascar construit, dès 2019, un projet de 620 kWc à 4 500 €/kWc installé. Par ailleurs, les projets d’Ampasindava (ANKA Madagascar) et Mahaboboka (Energie Technologie), qui présentent les coûts unitaires les plus bas, sont des projets développés à partir de 2015 et mis en service en 2017, dans un contexte mondial de réduction des coûts de fabrication des technologies. Les coûts unitaires d’investissement des projets solaires se distinguent donc sur la base de plusieurs facteurs dont notamment la capacité installée – plus elle est élevée, plus il y a possibilité d’économies d’échelle sur les coûts – et les coûts de fabrication des composants qui diminuent drastiquement depuis plusieurs années.

Pour réaliser des économies d’échelle, les projets peuvent soit s’orienter sur des sites à plus fort potentiel économique (nécessitant des capacités installées plus élevées), soit regrouper des sites proches pour générer des grappes ou clusters, et ainsi regrouper les demandes en énergie, induisant des capacités installées plus élevées.

![Figure 34: coût unitaire d’investissement en fonction de la capacité installée dans les projets solaires](image)

Les coûts unitaires d’investissement de la technologie éolienne s’élèvent en moyenne à 11 500 €/kWc installé en moyenne. Dans une logique similaire à celle appliquée aux technologies solaire et hydraulique, il est probable que ces coûts diminuent avec l’augmentation des capacités installées, puisque les 3 projets enquêtés présentent des capacités installées entre 12 kWc et 30 kWc. Cependant, les projets éoliens enquêtés présentent de nombreuses difficultés de maintenance de leurs installations au cours de l’exploitation. La non-conformité des installations avec les règles de l’art de la technologie (notamment le dimensionnement des équipements de production électrique) induit des risques majeurs sur la pérennité des installations et des risques de réinvestissement prématuré au regard de la durée de vie théorique de la technologie. Or, les coûts de réinvestissement, indisponibles au moment de l’étude, ne sont pas pris en compte dans les calculs réalisés.

![Figure 35: coût unitaire d’investissement en fonction de la capacité installée dans les projets éoliens](image)
A Manerinerina (CASIELEC) qui exploite un site en hybridation biomasse, le coût unitaire s’élève à 7 143 €/kW installé. Cependant, aucune information supplémentaire ne permet de conclure sur cette technologie.

Un rapport comparatif complémentaire peut être réalisé en comparant le coût d’investissement unitaire par connexion réalisée.

![Figure 36: graphe présentant le coût d’investissement unitaire moyen par connexion réalisée](image)

Le coût d’investissement unitaire moyen par connexion est de 968 €/connexion pour les projets hydroélectriques, 2 954 €/connexion pour les projets solaires, 2 523 €/connexion pour les projets éoliens et 2 000 €/connexion pour le projet en biomasse. L’ESMAP estime que les coûts de raccordement en mini-réseau se situent généralement entre 930 € et 1 951 €, ce qui place les projets enquêtés à Madagascar, en moyenne, au-dessus des attentes du secteur. Cependant, la moyenne sur les projets enquêtés est fortement impactée par le coût du raccordement pratiqué à Mahatalaky (Toky Construction) qui est plus de 2 fois supérieur à la moyenne pour la technologie solaire dans les projets enquêtés. Pour la technologie solaire, 2 projets sur 8 se situent dans les attentes formulées par l’ESMAP (Mahaboboka par Energie Technologie et Ampasindava par ANKA Madagascar). Pour la technologie hydraulique, 3 projets sur 4 se situent dans les attentes formulées par l’ESMAP (Ankazomiriotra par Green Power, Antetezambato par Aditsara et Fandriana par HIER). Dans le cas de la technologie éolienne, seul 1 projet sur 3 se situe dans les attentes de l’ESMAP (Ambolobozokely par Mad’Eole). La technologie biomasse ne semble pas encore être mature par rapport aux attentes du secteur en termes de coût de raccordement. Enfin, quelle que soit la technologie employée, il est utile de rappeler que ces coûts peuvent être impactés par le caractère insulaire et l’éloignement de Madagascar, facteurs engendrant des coûts d’importation élevés. Par ailleurs, peu de ports accueillent les containers de matériels en importation, ce qui génère des coûts élevés de transport local.

En termes de financement, la plupart des projets présentent un mix de financement alliant subvention, dette et fonds propres. Seuls 2 projets sur 16 n’ont reçu aucune subvention et ont été financés intégralement sur fonds propres. Cependant, les projets concernés – Fandriana (HIER) et Andovoranto (WeLight) – n’ont pas souhaité partager leurs données financières et ne sont donc pas pris en compte dans la suite de l’analyse sur les mécanismes de financement et leurs impacts.

25 ESMAP, Des mini-réseaux pour 1 demi-milliard de personnes, 2019
Les données partagées par les opérateurs montrent que plus le niveau de subvention est élevé, plus les projets ont tendance à développer une trésorerie positive.

Cependant, ce résultat doit être nuancé en fonction de l’ancienneté des projets, des flux de trésorerie sur les années d’exploitation (non disponibles dans le cadre de cette étude) ou encore de la qualité et la continuité des services fournis, qui seront les seuls à garantir la viabilité des projets sur le long terme par des apports en revenus. Bien que l’industrie des mini-réseaux - et plus largement du secteur de l’énergie par réseau - admettent le caractère indispensable des subventions dans les schémas de financement, le manque de données financières exploitables relatives aux projets enquêtés ne permet pas de tirer de conclusion stricte sur le niveau de subvention le plus pertinent pour les projets de mini-réseaux à Madagascar.

Note: dans le schéma ci-dessus, la catégorie portant sur les projets financés en subvention entre 50 % et 70 % n’est illustrée que par un seul projet, celui de Manerinerina (CASIELEC) qui repose sur la technologie biomasse. Compte tenu des résultats précédents concernant ce projet et du fait qu’il soit le seul projet biomasse enquêté, il convient de ne pas considérer cette donnée comme représentative de l’impact de la subvention entre 50 % et 70 % sur le niveau de trésorerie des projets.
A noter que le cadre réglementaire à Madagascar prévoit un niveau maximal de subvention admis et supporté par le gouvernement malagasy fixé à 70 % des investissements initiaux totaux26, mais compte tenu de l’analyse réalisée, il ne semble pas possible de confirmer la pertinence de ce taux par rapport à l’atteinte des objectifs de performance économique des projets de mini-réseaux.

3.4.3. Les projets démontrent-ils une efficience économique (rapport entre résultats atteints et moyens employés) ?

La notion de Performance économique repose également sur l’adéquation entre les résultats effectivement atteints et les moyens employés pour les atteindre (notion d’efficience). Elle fait écho aux profils de dépenses engagées par les projets pour garantir l’atteinte des résultats et l’équilibre financier.

Ainsi, les rapports de coût d’investissement unitaire par kW installé doivent être analysés en parallèle du rapport des coûts opérationnels (OPEX) par rapport aux chiffres d’affaires réalisés.

Note : les opérateurs enquêtés n’ont pas souhaité partager leurs informations chiffrées de manière précise. Ils ont néanmoins accepté de confirmer des fourchettes de coûts : c’est pourquoi les analyses réalisées ci-après présentent les résultats selon des fourchettes de coûts bas et de coûts hauts. Par ailleurs, malgré les demandes, aucun des opérateurs n’a accepté de fournir son modèle financier actualisé.

26 www.ore.mg
Dans cette analyse, les OPEX comprennent les dépenses liées i) aux personnels et charges salariales, ii) aux frais de maintenance, iii) aux frais généraux, iv) aux provisions pour renouvellement de matériels, v) aux dépenses de carburant dans le cas où des projets disposent de groupes électrogènes, vi) à des dépenses diverses (ex : marketing rural, communication, etc.).

Seulement 12 opérateurs sur 16 ont accepté de partager des informations sur leur niveau de dépenses opérationnelles. D’après la Figure 40, les projets, qu’ils soient hydroélectriques, solaires ou éoliens, présentent tous des coûts opérationnels entre 1 000 €/an et 6 000 €/an. La technologie biomasse est celle qui semble nécessiter le plus de coûts opérationnels – entre 9 000 €/an et 14 000 €/an selon si l’on considère la fourchette basse ou la fourchette haute –, constitués en majorité de frais de carburant pour continuer l’alimentation en électricité des usagers (compte tenu des difficultés et défauts d’approvisionnement au niveau de la centrale à biomasse) et de frais de personnel et charges salariales et frais de maintenance pour assurer une continuité de service maximale.

Dans le cas des projets solaires enquêtés qui ont fourni leurs données, à part le projet à Befandefa (ANKA Madagascar) qui n’est pas rentable, tous les projets semblent être à l’équilibre opérationnel si l’on considère l’hypothèse de fourchette basse des OPEX. Dans le cas des projets hydroélectriques, seuls 2 projets sur 3 ayant fourni leurs données, montrent un équilibre opérationnel. A noter que le projet à Ankazomirotria (Green Power) présente un chiffre d’affaire particulièrement élevé, qui peut s’expliquer par des consommations moyennes des usagers élevées (ex : la consommation des ménages est en moyenne 4,3 fois supérieure à celle des autres projets) et un taux de recouvrement élevé d’environ 80 %.

Aucun des projets éoliens ne montre de cashflow positif : les projets font face à de nombreux incidents techniques et à une disponibilité irrégulière de la ressource, qui ne permet pas aux systèmes de fonctionner à pleine puissance de manière régulière et significative tout au long de l’année. Les centrales ne produisent que quelques mois dans l’année. Avec des durées de fourniture d’électricité limitées (2 heures/jour pour la centrale d’Ambondro par ASA, 1 heure/jour pour Ivovona par Mad’Eole et 4 heures/jour pour Ambolobozokely par Mad’Eole), les opérateurs ne sont donc pas en mesure de générer des fonds suffisants de renouvellement et de maintenance pour pallier les incidents techniques.

De manière générale et d’après les enquêtes réalisées, les projets qui présentent un équilibre opérationnel sont les projets solaires et les projets hydroélectriques. Les technologies éolienne et biomasse ne semblent pas présenter de maturité opérationnelle pour le moment à Madagascar ; les projets éoliens souffrent d’avaries fréquentes dues à plusieurs facteurs (dont l’intermittence de la
ressource et le manque de maitrise de la technologie), et les projets biomasse souffrent de leur immaturité, entrainant des pannes également fréquentes.
Elles ont un impact sur les recettes, puisque les ventes d’électricité sont limitées, et sur les dépenses opérationnelles, comme c’est le cas du projet biomasse à Manerinerina par CASIELEC (augmentation des dépenses d’entretien et de carburant pour le fonctionnement du groupe électrogène).

Le calcul du LCOE (Levelized Cost of Electricity) pourrait permettre de renforcer l’analyse de rentabilité économique des projets. Malgré l’absence de données exploitables, un calcul conservateur du coût de l’électricité vendue a été réalisé sur la base des niveaux connus de dépenses opérationnelles (moiennée des OPEX fourchette basse et fourchette haute), des quantités de kWh vendues et des CAPEX initiaux (les CAPEX pour réinvestissement ne sont pas disponibles). La figure ci-dessous présente les coûts de l’électricité vendue selon si les CAPEX ont été subventionnés ou non.

![Figure 41: graphe présentant le coût d’électricité vendu simplifié par centrale fonction du niveau de subvention](image)

L’ESMAP estime qu’un mini-réseau solaire hybride avec backup diesel, bien conçu, desservant plus de 1 500 personnes, présente un LCOE d’environ 0,55 €/kWh lorsqu’il dessert des clients domestiques, ce qui lui confère un facteur de charge d’environ 22 %. À mesure que le coût des machines et équipements de génération diminuera et que les développeurs augmenteront la demande d’électricité pour des utilisations productives pendant la journée, les mini-réseaux pourront augmenter leur charge à plus de 40 %. Combiné à la réduction des coûts indirects grâce à la gestion à distance et des compteurs intelligents ainsi que des outils de planification géospatiale, qui réduisent les coûts de dimensionnement et étude préalables, le LCOE de ces mini-réseaux pourraient être réduits de 25 % soit 0,38 €/kWh en 2020. Si les coûts de certains composants continuent de diminuer, l’ESMAP estime que le LCOE pourrait baisser de 60 à 70 % pour atteindre environ 0,19 €/kWh d’ici 203027. Dans le cas de la présente étude, le coût le moins cher de l’électricité vendue est celui du projet hydroélectrique d’Ankazomiratra (Green Power) à 0,07 €/kWh en tenant compte des CAPEX subventionnés, mais ce coût, comme vu précédemment, ne tient pas compte des réinvestissements liés à la remise en état de la centrale après son endommagement due à une crue exceptionnelle. La quasi-totalité des projets solaires enquêtés présentent, eux, des coûts élevés de l’électricité vendue, supérieurs en moyenne à 3 €/kWh soit 6 fois la moyenne admise sur le marché international ; le seul projet solaire qui semble s’aligner avec la tendance internationale est le projet à Andavadoaka (ANKA Madagascar) qui présente un coût à 0,39 €/kWh vendu en tenant compte des CAPEX subventionnés. Les projets éoliens se situent eux aussi au-dessus des attentes du marché avec un coût moyen de l’ordre de 1,14 €/kWh vendu en

27 ESMAP, Des mini-réseaux pour 1 demi-milliard de personnes, 2019
tenant compte des CAPEX subventionnés. Idem pour le projet biomasse qui présente un coût moyen de 1,09 €/kWh vendu en tenant compte des CAPEX subventionnés.

En revanche, et sur la base des informations fournies par seulement 8 des 16 projets, la majorité des projets subventionnés présentent des prix de vente de l’électricité inférieurs aux coûts de revient de cette électricité vendue, ce qui signifie que la subvention a joué un rôle de levier pour permettre de proposer des tarifs de vente de l’électricité plus abordables, mais au prix d’une pérennité hasardeuse.

Par contre, le projet à Ankaromiriotra (Green Power) présente un coût de l’électricité à environ 0,15 €/kWh vendu et a été subventionné à hauteur de 40 %. Néanmoins, l’électricité est vendue au client final à en moyenne 0,24 €/kWh, tarif supérieur au coût de l’électricité, même subventionné. La subvention ne semble donc pas avoir été utilisée dans ce cas comme levier pour proposer des tarifs abordables, ce qui pose la justification d’un tel outil de financement sur le projet.
3.5. **SUIVI ET EVALUATION DES IMPACTS**

3.5.1. Le projet prévoit-il un plan de suivi/évaluation des impacts et résultats dans une optique d’amélioration continue ?

L’évaluation des projets est une étape décisive, qui permet non seulement aux opérateurs de mini-réseaux d’évaluer l’atteinte de leurs objectifs dans une approche de Performance globale, mais également aux partenaires techniques et financiers et aux autorités concédantes de confirmer l’utilisation adéquate des ressources financières pour délivrer des services de qualité, modernes, durables et équitables.

Le suivi est le processus systématique de recueil, d’analyse et d’utilisation d’informations visant à déterminer en continu les progrès d’un projet en vue de la réalisation de ses objectifs et à guider les décisions relatives à sa gestion. Le suivi est entrepris une fois que le projet a démarré et se poursuit tout au long de la période de son exécution. L’évaluation porte sur les accomplissements escomptés et réalisés et examine la chaîne des résultats (intrants, activités, extrants, effets et impacts), les processus, les facteurs contextuels et les rapports de cause à effet afin d’en comprendre la teneur. L’évaluation vise à déterminer la pertinence, l’impact, l’efficacité, l’efficience et la durabilité des interventions et leurs contributions aux résultats obtenus.

Parmi les projets enquêtés, seuls 4 projets affirment effectuer un suivi et une évaluation des impacts, mais ne le pratiquent pas de manière formalisée. ANKA Madagascar récupère ponctuellement des informations relatives à ses projets, notamment en ce qui concerne : l’évolution des consommations par segment d’usagers (segments de ménages, services publics, usagers productifs) au fil du temps et en fonction de l’évolution des tarifs appliqués et de la structure tarifaire mise en œuvre, le nombre d’usagers productifs (suivi de l’évolution et caractérisation de la croissance des effectifs), ou encore, sur ses plus anciens sites (Andavadoaka et Befandefa) un suivi de la satisfaction des usagers à travers une boîte à idées disponible librement. Cependant, l’entreprise n’effectue pas de formalisation spécifique, les résultats sont donc partiellement exploités (ils servent surtout à argumenter le développement de nouveaux projets). Par ailleurs, Energie Technologie effectue un suivi de l’évolution des consommations sur son site de Mahaboboka mais ne formalise pas d’évaluation spécifique.
3.5.2. Quel est le niveau de satisfaction des bénéficiaires clefs – dont ménages, usagers productifs, élus locaux ?

Faute de résultats de suivi et évaluation formalisés et exploitables au niveau des opérateurs, l’analyse s’appuie sur le recueil des avis de satisfaction des bénéficiaires réalisé pendant les enquêtes. Le graphe suivant représente les évolutions des taux de pénétration et des taux de satisfaction des clients par rapport aux technologies employées.

L’évolution des taux de pénétration suit les tendances de satisfaction des clients. Moins les usagers semblent satisfaits, moins les taux de pénétration sont élevés. Il apparaît même dans certains projets que l’insatisfaction entraîne des taux de déconnexion. C’est le cas par exemple dans le projet à Ivovona (Mad’Eole) qui présente un taux de déconnexion moyen de 46 %, expliqué par une durée de fonctionnement trop insuffisante (1h par jour) pour être productive, et que les tarifs forfaitaires sont trop élevés et incohérents avec les services fournis. De même, à Andovoranto (WeLight), les bénéficiaires semblent insatisfaits du prix du kWh qu’ils trouvent trop élevé, surtout pour les ménages, ainsi que des coupures fréquentes entraînant des dommages sur les matériels électriques des usagers.

A Manerinerina (CASIELEC), le système de production utilisant la biomasse ne fonctionne plus, donc le groupe électrogène, de puissance inférieure, qui fournit l’électricité. Les abonnés n’en sont pas...
satisfaits et se déconnectent petit à petit. La production d'électricité ne couvrant plus les besoins et le prix de l’électricité augmentant, les acteurs économiques, à l’exemple des bars, se déconnectent du réseau malgré leurs besoins pour le rafraîchissement des boissons et la conservation des denrées périssable. Les seuls clients restant connectés au réseau sont les ménages et les quelques institutions publiques comme la mairie et la gendarmerie.

Figure 46: Evolution du nombre d'abonnés par projet enquêté

Le graphique ci-dessus illustre l’évolution du nombre d’abonnés (tous types confondus) par projet, de leur première année de fonctionnement à l’année de collecte de données, en 2019.
3.5.3. Quels sont les effets immédiats et les perspectives d’impacts, directs et indirects, positifs et négatifs, du projet ?

Le tableau suivant propose une vision des impacts socioéconomiques positifs et négatifs pour l’ensemble des projets. Les informations ont été relevées sur les sites auprès des utilisateurs, des autorités locales et des délégataires.
IMPACTS POSITIFS

<table>
<thead>
<tr>
<th>Ankazomiriotra</th>
<th>Befandefa</th>
<th>Ifotaka</th>
<th>Mahaboboka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Développement des AGR comme ateliers bois, fer, et decortiqueries</td>
<td>- Quelques AGR créées ou renforcées (notamment épibar et gargottes)</td>
<td>Baisse du niveau d'insécurité : une partie du village est animée en soirée car la route principale qui traverse la localité est éclairée par les éclairages publics</td>
<td>nc</td>
</tr>
<tr>
<td>Conditions d’accueil de nuit dans les CSB améliorées</td>
<td>- Baisse du niveau d'insécurité : une partie du village est animée en soirée car la route principale qui traverse la localité est éclairée par les éclairages publics</td>
<td>nc</td>
<td>nc</td>
</tr>
<tr>
<td>Insatisfaction due aux coupures générées par la mauvaise qualité et le mauvais entretien des infrastructures de distribution</td>
<td>- Insatisfaction due aux coupures générées par la mauvaise qualité et le mauvais entretien des infrastructures de distribution</td>
<td>nc</td>
<td>nc</td>
</tr>
</tbody>
</table>

IMPACTS NEGATIFS

<table>
<thead>
<tr>
<th>Mahatalaky</th>
<th>Ambondro</th>
<th>Marovato</th>
<th>Ivovona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le dynamisme de la commune a augmenté depuis l'arrivée de l'électricité : il y a par exemple des projections de films en soirée, les commerces se développent, la commune reste animée le soir</td>
<td>- Développement de quelques AGR au démarrage du projet (poste soudure, commerces utilisant des congélateurs)</td>
<td>- Accès à l'information : acquisition des appareils de communication comme radio chargeable, TV, etc</td>
<td>- Accès à l'information : acquisition des appareils de communication comme radio chargeable, TV, etc</td>
</tr>
<tr>
<td>Au niveau des services de santé, l'électricité facilite les interventions urgentes surtout en pleine nuit</td>
<td>- Conscientisation de la population sur l'importance de l'électricité pour le développement</td>
<td>- Conscientisation de la population sur l'importance de l'électricité pour le développement</td>
<td>- Conscientisation de la population sur l'importance de l’électricité pour le développement</td>
</tr>
<tr>
<td>Selon le directeur de l'école primaire publique, le raccordement de l'école permet aux élèves en classe d'examen de prolonger les heures de cours</td>
<td>- Conscientisation de la population sur l'importance de l’électricité pour le développement</td>
<td>- Conscientisation de la population sur l'importance de l’électricité pour le développement</td>
<td>- Conscientisation de la population sur l'importance de l’électricité pour le développement</td>
</tr>
<tr>
<td>nc</td>
<td>nc</td>
<td>nc</td>
<td>nc</td>
</tr>
</tbody>
</table>
IMPACTS NEGATIFS

<table>
<thead>
<tr>
<th>Ampasindava</th>
<th>Antezambato</th>
<th>Ambolobozokely</th>
<th>Manerinerina</th>
</tr>
</thead>
<tbody>
<tr>
<td>nc</td>
<td>- Modèle de gestion mal compris par les usagers, relation institutionnelle et contrat d'exploitation pas clairs, générateur de frustration. - Pollution visuelle à cause de l'éolienne.</td>
<td>na</td>
<td>- Production insuffisante, l'utilisation des appareils est limitée et l'investissement fait par les villageois demeure inutile. - L'électricité est inexploitables donc les usagers ne peuvent pas développer leurs activités. - Le paiement du forfait devient une charge pour chaque usagers.</td>
</tr>
</tbody>
</table>

IMPACTS POSITIFS

<table>
<thead>
<tr>
<th>Ampasindava</th>
<th>Antezambato</th>
<th>Ambolobozokely</th>
<th>Manerinerina</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Développement et création d'AGR dont hôtels et épibars. - Réduction des dépenses énergétique des usagers grâce à un tarif équitable. - Modernisation du mode vie de la population.</td>
<td>- Des activités artisanales utilisant des machines électriques ont été créées et permettent d'accroître les sources de revenus. Changement de qualité de vie des usagers en milieu rural. - Modernisation du mode vie de la population.</td>
<td>- Prise de conscience par les usagers que un tel projet nécessite exige une grande responsabilité vis-à-vis des parties prenantes. - La prise en main d'une partie de la gestion de la centrale par les associations des usagers a renforcé leurs solidarité. - Création d'AGR supplémentaires comme des bars avec de karaoké même si cela ne dure que 4h seulement par jour.</td>
<td>- Amélioration des moyens de communication. - Dynamisation de la vie nocturne.</td>
</tr>
<tr>
<td>IMPACTS NEGATIFS</td>
<td>nc</td>
<td>- Les services publics ne sont pas raccordés au réseau - Pas de retombées économiques au niveau de la commune (la taxe communale de 2 % n’est pas payée régulièrement) - La négligence sur les installations (câbles par terre, mauvaise installation domestique, etc...) augmente les risques d’accidents au sein du village - Conflit entre les membres de l’association gestionnaire et certains usagers car ces derniers pensent que la gestion n’est pas transparente - Les batteries défectueuses qui sont éparpillées autour de la centrale donnent des effets néfastes pour l’environnement - Actuellement, l'existence de l'électricité est vue comme une charge pour les villageois car ils ne peuvent pas l'exploiter pour améliorer leurs revenus - Mauvaise coordination entre le projet et le Kiosque solaire HERi, générateur de frustrations et de tensions</td>
<td></td>
</tr>
<tr>
<td>IMPACTS POSITIFS</td>
<td>Andina</td>
<td>- Développement de petites AGR comme la vente de clarinettes et de yaourts - Développement d’AGR comme les ateliers et les scieries bois - Sécurité améliorée grâce à l’éclairage public mais aussi grâce au développement économique ; les villageois confirment qu’il n’y a pas de dahalo dans leur territoire - A cause de la mauvaise gestion du projet, des conflits sont nés au niveau des usagers - Les employés du projet se plaignent de ne pas être suffisamment payés</td>
<td></td>
</tr>
<tr>
<td>IMPACTS POSITIFS</td>
<td>Fandriana</td>
<td>- Développement d’AGR comme les hôtels, les épibar, les boîtes de nuit, un hôpital - Stimulaion d’activités de développement avec des ONG (ex : Blue Ventures pour la protection de la biodiversité marine)</td>
<td></td>
</tr>
<tr>
<td>IMPACTS POSITIFS</td>
<td>Andavadaoka</td>
<td>- L’opérateur ne paye pas la taxe communale, mais la commune n’ose pas faire pression sur l’opérateur de peur qu’il abandonne l’exploitation - Plusieurs clients se plaignent que l’opérateur n’est pas à l’écoute lorsque des problèmes techniques surviennent</td>
<td></td>
</tr>
<tr>
<td>IMPACTS POSITIFS</td>
<td>Andovoranto</td>
<td>- Les agents d’exploitation locaux ne respectent pas toujours les règles émises par l’opérateur et créent un climat de méfiance vis-à-vis des usagers</td>
<td></td>
</tr>
</tbody>
</table>
En synthèse, les impacts positifs majeurs recensés concernent essentiellement i) les opportunités de création ou de renforcement d'activités génératrices de revenus rendues possibles par l'accès à une source d'électricité en milieu rural, ii) l'amélioration des conditions de sécurité dans les villages, et iii) l'amélioration d'accès à des services de base (santé, éducation), plus modernes et plus performants. A l’opposé, les principaux impacts négatifs sont liés aux modes de gestion parfois inadaptés ou inefficaces, et aux problématiques de continuité de services, qui freinent dans certains cas, considérablement l’usage de l’électricité et donc l’atteinte des objectifs de développement socio-économique.

Figure 48: note comparative question 5.3
4. CONCLUSIONS ET RECOMMANDATIONS

Cette étude réalisée sur 16 projets de mini-réseaux à Madagascar, représentatifs de plusieurs modes de gestion et exploitation, de technologies différentes (hydroélectricité, solaire PV, éolien, biomasse, systèmes hybrides), ou encore de schémas tarifaires variés, permet de mettre en évidence :

- D’une part, des facteurs clefs de succès pour permettre aux projets de répondre aux besoins et attentes des bénéficiaires ruraux, tout en répondant aux attentes de l’Etat Malgache, des investisseurs et des parties prenantes à l’affût de projets innovants et performants,
- D’autre part, d’identifier des risques qui, s’ils sont négligés ou tout simplement ignorés, peuvent mettre en péril les projets et entretenir le sentiment des parties prenantes du secteur de l’énergie au niveau national comme international, que les projets de mini-réseaux ne sont pas une solution viable pour augmenter durablement le taux d’accès à l’électricité, notamment dans un pays en développement comme Madagascar.

Parmi la multitude des facteurs qui font la réussite ou l’échec de projets de mini-réseaux, l’étude révèle 5 composantes clefs et des facteurs endogènes aux projets auxquels les projets doivent se conformer pour augmenter leurs chances de succès et limiter leurs risques d’échec. La grille d’évaluation des projets sur ces composantes est disponible en annexe 1.

Sur les 16 projets enquêtés, aucun ne prétend se conformer parfaitement aux 5 composantes clefs dans leur ensemble. Parmi les projets qui présentent les notations d’évaluation les plus performantes on pourra notamment citer les projets suivants :

- **Le projet à Fandriana** (HIER) est celui avec la capacité installée la plus importante. Il permet de mettre en évidence l’importance des économies d’échelle pour atteindre un équilibre économique et optimiser les efforts opérationnels. Cependant, le projet de Fandriana est perturbé dans son fonctionnement et dans son financement par les écueils d’un dimensionnement non conforme aux règles de l’art et aux bonnes pratiques inhérentes à la technologie employée, soulignant les enjeux qui reposent sur les études préalables et la constitution de dossier d’APD solide ;

- **Les projets à Andavadoaka et Ampasindava** (ANKA Madagascar) présentent un profil évaluatif homogène sur les 5 composantes clefs : ces 2 projets semblent avoir été développés en tenant compte des besoins et des spécificités des sites. Ils ont bénéficié de subventions qui leur ont permis de proposer des tarifs attractifs, garants de leur croissance économique, et semblent aptes à délivrer des résultats autant que des impacts. Cependant, ces projets doivent aujourd’hui démontrer leur capacité à affronter des renouvellements de matériels et à s’adapter à l’évolution socio-économique de leurs environnements dont le profil de demande énergétique est en pleine croissance et pourrait dépasser les capacités actuelles des centrales installées ;

- **Le projet à Mahatalaky** (Toky Construction), développé dans le cadre du projet BOREALE de la FONDEM, délivre des impacts concrets de développement socio-économique dans une région fragile et très isolée (Androy) mais présente un schéma financier risqué, avec des tarifs très bas, non représentatifs des coûts de production, même subventionnés, et des redevances fixes élevées introduisant une barrière économique mensuelle pour les usagers. Le projet présente donc un risque de viabilité sur le long terme et ne semble pas être un modèle réplicable à grande échelle compte tenu des écarts entre les coûts d’investissement élevés, les dépenses opérationnelles faibles et le niveau de revenus, contraints par des tarifs très, voire trop, bas.

- **Le projet de Marovato** (ASA) présente un profil évaluatif homogène sur 4 des composantes clefs : le projet, géré de manière associative localement, délivre des impacts et est bien intégré dans la communauté bénéficiaire ce qui lui confère une stabilité opérationnelle.
Cependant, le projet, qui a été entièrement subventionné, doit pouvoir prouver sa capacité à être rentable et à subvenir par ses propres moyens. Par ailleurs, faute de capitalisation de données au niveau local, le projet n’a pas été en mesure de partager un certain nombre de données quantitatives, notamment financières.

Quelles que soient leurs forces ou leurs faiblesses, les projets enquêtés ont permis de mettre en évidence certaines tendances :

4.1. CONCEPTION INITIALE DU PROJET

Il convient de rappeler que l’arrivée d’un projet d’électrification rurale dans un territoire non électrifié est un changement marquant dans la vie des populations locales. Comme tout changement, il obtient consensuellement et se situe de la part de certains, rejet de la part d’autres. Néanmoins, un projet d’électrification rurale doit être en capacité de prendre en compte les différentes parties prenantes, les écouter, les informer et s’assurer que l’intervention et ses enjeux sont compris et appropriés. L’adhésion des parties prenantes et leur animation active semblent être des conditions *sine qua none* de réussite des projets de mini-réseaux.

A un niveau national, le rôle des agences ministérielles est clef pour permettre aux projets de se structurer conformément au cadre réglementaire et en alignement avec les prérogatives du gouvernement en matière de développement du sous-secteur Electricité à Madagascar.

Leur rôle est primordial pour garantir notamment l’obtention des contrats de délégation de service (qui confèrent droits et responsabilités aux exploitants) ou bien l’approbation sur les niveaux et structures tarifaires de vente des services à l’électricité aux consommateurs finaux. Mais leur rôle n’est pas réduit à celui de décisionnaire uniquement : les agences ministérielles, dont l’ADER en premier lieu, jouent un rôle d’assistance technique, d’accompagnement, de conseil, de modération parfois, et d’appui au financement, en théorie.

Aujourd’hui, les fonctions et les ressources de l’ADER ne lui permettent cependant pas d’assumer toutes ces fonctions, laissant les opérateurs en autonomie et sans réel cadrage. S’il est nécessaire que les opérateurs créent un dialogue régulier avec l’ADER, il convient de souligner l’importance d’une réforme sur le rôle de l’ADER et une révision de ses ressources pour pouvoir être force de propositions, de répondant et d’appui auprès des opérateurs.

Certains partenaires techniques et financiers comme l’Union Européenne, la GIZ ou l’ONUDI s’articulent pour accompagner l’ADER et organisent des événements dédiés au rapprochement du secteur privé et du secteur public – c’est le cas de la Plateforme d’Echange Public-Privé (PEPP) qui se réunit deux fois par an depuis 2017. En 2020, la Banque Mondiale et la GIZ lancent des consultations auprès des différentes parties prenantes du secteur pour élaborer un plan de réforme de l’ADER, visant à restructurer son mode de fonctionnement, son organisation et la gestion de ses ressources.

A un niveau local, l’étude met en évidence le manque d’implication des communes et des acteurs locaux, pourtant premiers bénéficiaires des projets, dans l’élaboration et l’intégration des projets. Dans la majorité des cas, les communes bénéficiaires n’ont pas conscience de leurs responsabilités ou de leurs droits, ni même des enjeux des projets eux-mêmes. Parfois considérées comme utiles, notamment pour des affaires administratives, souvent considérées comme un obstacle, aussi pour des questions administratives, les communes et les acteurs locaux sont méjugés. Si réforme de l’ADER il y a, il conviendrait de doter les communes et élus locaux d’informations didactiques et réglementaires, leur permettant de développer leurs capacités de communication, d’action et de participation aux projets.

Du côté des développeurs et opérateurs de projets, il est recommandé qu’ils développent des outils et des démarches pour inclure davantage les acteurs locaux afin qu’ils s’approprient les enjeux des projets et se dotent de ressources pour les accompagner : réalisation des démarches de sécurisation foncière, sécurité des infrastructures, plaidoyers auprès des régions et de l’État pour des programmes connexes.
de développement, mobilisation de fonds auprès d’ONG ou de programmes de financement public, etc.

Enfin, la conception initiale des projets, portée conjointement par les développeurs, les acteurs locaux et les agences ministérielles, repose sur des études actualisées et caractérisations approfondies des besoins en électricité. Ce travail permet d’évaluer les caractéristiques technico-économiques requises pour que les projets soient correctement dimensionnés (ni surdimensionnés ni sous dimensionnés). Cela permet également aux projets de prouver une rentabilité sur le long terme, ce qui constitue un facteur clé d’attention de la part des investisseurs. La conception initiale des projets doit donc non seulement inclure un panel d’acteurs mais aussi un panel de données suffisant pour convaincre de leur faisabilité.

4.2 DESIGN ET CHOIX TECHNIQUE ET TECHNOLOGIQUE

La conception des projets repose notamment sur l’adéquation entre les besoins identifiés (objet de la phase de Conception Initiale du Projet), la ressource énergétique disponible et les spécificités de la technologie sélectionnée. Sur les 16 projets enquêtés, tous ont adopté une technologie cohérente avec la ressource disponible localement : le soleil est disponible sur l’ensemble du territoire dans des proportions importantes ; les projets hydroélectriques sont développés sur les hauts plateaux dans le centre du pays tandis que les projets éoliens ont été développés dans les deux zones les plus ventées du pays, la région Nord et le grand Sud. Enfin, l’unique projet biomasse a été installé dans une zone à forte production de jujube.

Concernant les choix techniques et technologiques, l’étude permet de mettre en évidence certaines bonnes pratiques et des conditions minimales au succès des projets :

- La technologie hydraulique permet globalement un haut niveau de service, mais la source n’est pas souvent à proximité des pôles de consommation et les dimensionnements doivent prendre en compte :
 - i) les règles relatives à l’état de l’art international et les bonnes pratiques de l’industrie,
 - ii) les éléments environnementaux liés au changement climatique.

Ces bonnes pratiques sont indispensables pour garantir que les installations vont produire dans des conditions optimales, sans réinvestissements importants ultérieurs nécessaires, pendant toute la durée de vie des infrastructures, qui peut aller au-delà de 40 à 50 ans (comme constaté sur des micro-centrales hydrauliques). Les projets défaillants dans cette approche de dimensionnement (cas d’Ankazomiriostra par Green Power et Fandriana par HIER) risquent des coûts additionnels significatifs, dangereux pour leur viabilité. Pour plus d’informations sur les bonnes pratiques liées à la technologie hydroélectrique, se référer à la Note28 ;

- La technologie solaire, couplée ou non à un groupe électrogène, permet également un bon niveau de service. La présence de la technologie solaire est gage d’un niveau de service minimum. Modulable et rapide à mettre en œuvre (délai moyen entre la phase de développement et la mise en service des installations : projets de petite hydroélectricité de 2 à 5 ans / projets solaires de 1 à 3 ans), la technologie solaire est surtout privilégiée pour sa réponse rapide et flexible aux besoins des zones rurales et pour sa compréhension facile par les acteurs locaux. Cette solution présente l’avantage de pouvoir être positionnée au plus près des consommateurs, réduisant les investissements dans les réseaux de distribution. L’enjeu principal des mini-réseaux photovoltaïques repose toutefois sur l’indispensable stockage d’énergie électrique qui présente

des risques opérationnels et des risques financiers importants dus aux renouvellements fréquents ;

- La technologie éolienne a du mal à assurer un haut niveau de service tout au long de l’année et sur le long terme. La variation saisonnière du productible annuel, la mauvaise maîtrise de la technologie (qui fait appel à des pièces tournantes) par les ressources locales, et les dimensionnements souvent incohérents avec un optimum technico-économique font de l’éolien une technologie non mature à Madagascar pour des projets d’électrification rurale. Présentant cependant l’avantage de pouvoir produire en soirée et la nuit, elle se présente comme une solution d’hybridation potentielle aux projets solaires ;

- Le stockage est un enjeu de taille pour toutes les productions d’énergies intermittentes (éolien, solaire, hydraulique en période d’étiage) ; la présence d’un groupe électrogène d’appoint favorise la qualité et la continuité du service lors des périodes de faible gisement et lors des périodes à forte demande (fête nationale, nouvel an, etc.). Cependant, cet ajout doit être évalué au regard des coûts opérationnels engendrés pendant son exploitation ;

- La technologie biomasse n’apparaît pas, via cette étude, comme une technologie mature à Madagascar, malgré les opportunités liées à la transformation de matière organique, à cause des difficultés d’approvisionnement en ressource de manière régulière. Il s’agit aussi d’une technologie nécessitant une assistance technique peu maîtrisée localement, ‘entretien et/ou la gestion des pannes structurelles nécessitant l’intervention d’experts internationaux.

4.3 MODE DE GESTION ET D’EXPLOITATION

Quel que soit son choix technique et technologique, aucun projet ne saurait être performant et pérenne sur le long terme sans un mode de gestion et d’exploitation robuste, bien outillé, et surtout, bien managé.

D’après l’étude, le mode de gestion communautaire par une association, une coopérative ou un groupement d’acteurs locaux ne diffère pas significativement du mode de gestion privée par internalisation des ressources.

Le facteur de réussite repose essentiellement sur les capacités et compétences techniques des personnes en charge de l’exploitation et de la maintenance. Compte tenu du fait que les compétences techniques spécifiques liées à l’électricité ou à la conversion énergétique sont rarement disponibles au niveau local, les projets en gestion privée sont souvent avantageés car ils accèdent plus facilement à des ressources ayant suivi des parcours d’études spécialisées et disposent de plus de ressources qualifiées pour former et assurer des transferts de compétences avec les personnels locaux.

Ainsi, si la gestion communautaire ou associative ne représente pas de risques formels pour les projets, elle n’est néanmoins pas un facteur encourageant pour garantir la réplication des modèles de mini-réseaux, faute de standardisation des pratiques et de régularité des ressources humaines.

Dans tous les cas, la présence de techniciens locaux qualifiés et accompagnés semble être un réal facteur pour assurer la bonne qualité du service dans le temps.

Pour pallier les risques liés à l’action des hommes et pour gagner en expérience, de plus de plus de projets se dotent d’outils d’exploitation, de suivi et d’analyse tels que les compteurs intelligents ou les plateformes de monitoring à distance. L’utilisation des compteurs intelligents et à prépaiement semblent se démocratiser dans les projets de mini-réseaux à Madagascar et bénéficient d’un retour d’expériences favorable : taux de recouvrement proches de 100 %, diminution des délais de recouvrement et de mobilisation des équipes commerciales d’exploitation, reporting de vente simplifié, etc. Cette pratique est encouragée et devrait s’accentuer avec la réduction des coûts de production à l’international. Seule ombre au tableau, les compteurs intelligents, pour être
parfaitement opérationnels, nécessitent généralement une connexion au réseau 3G, pas systématiquement disponible dans les zones rurales de Madagascar.

Concernant les outils de suivi et monitoring à distance des équipements de production, il semble que beaucoup de fabricants les fournissent automatiquement avec leurs équipements. Beaucoup d’opérateurs disposent donc de ces outils efficaces. Cependant, peu d’entre eux mettent en place des procédures systématiques d’analyse des données enregistrées. Pourtant, ces outils s’avèrent être de puissants alliés pour anticiper les problèmes techniques ou les arrêts de production. L’analyse des données recueillies doit être renforcée pour permettre aux opérateurs d’améliorer l’exploitation, la gestion de leurs ressources (humaines, techniques et financières) et les flux de dépenses opérationnelles.

4.4 PERFORMANCE ÉCONOMIQUE ET PROFIL DE REVENUS

L’analyse de la performance économique des projets relève d’une analyse multifactorielle croisée, qui s’appuie notamment sur les niveaux :
- d’investissement initial et de coût unitaire d’investissement par kW installé ou par connexion réalisée,
- de subvention acquise et le rôle de levier qu’elle exerce sur les projets,
- de dépenses réalisées, ou encore
- de structure de tarifs appliqués pour garantir un profil de revenus.

Malgré l’indisponibilité de données exhaustives et exploitables, les analyses partielles permettent de dégager quelques tendances :

- Du point de vue technologique, la maturité des technologies hydraulique et solaire permet de garantir des coûts d’investissement initiaux de plus en plus faibles, encouragés par une réduction des coûts de fabrication sur le marché international et le développement de projets de moyenne capacité (plusieurs centaines de kW à quelques MW) au niveau local. Une attention particulière doit cependant être apportée au dimensionnement initial qui, s’il est mal réalisé ou négligé, peut entraîner des surcoûts précoces et non prévus au réinvestissement, véritablement dommageables pour la viabilité des projets et leur succès sur le long terme. Concernant les dépenses d’exploitation, les technologies hydraulique et solaire semblent également être les plus pertinentes : leur bonne maîtrise technique par les ressources locales minimise les risques liés à l’entretien et la maintenance. Cependant, la majorité des projets sous-estime les risques et les imprévus d’exploitation qui engendrent malheureusement des coûts additionnels souvent significatifs. Il convient d’encourager les développeurs de projets de mini-réseaux à rechercher les sources de risques potentiels liés spécifiquement à la technologie employée ou au site d’implantation, et à provisionner des fonds pendant la durée de vie des projets, pour absorber les aléas d’exploitation. Les technologies éolienne et biomasse ne semblent quant à elles pas être adaptées au marché des mini-réseaux à Madagascar. Elles ne sont pas suffisamment maîtrisées par les ressources locales, qui dépendent dès lors d’expertises extérieures, avec le risque de ne pas être correctement déployées en milieu rural (ressource primaire inadaptée, maintenance défaillante, etc.).

- L’étude réalisée démontre l’importance du rôle de la subvention sur les niveaux de tarifs de vente au kWh proposés et sur la capacité des projets à atteindre un équilibre financier au niveau opérationnel. Plus la subvention est élevée – et c’est d’ailleurs son argument principal – plus elle peut être actionnée comme levier pour diminuer les tarifs de vente et renforcer la capacité des projets à atteindre un équilibre économique rapide. Si ce postulat est effectivement vérifié dans certains projets, la plupart de ceux enquêtés propose des tarifs de vente bien inférieurs aux coûts
de l’électricité vendue, et suivant un différentiel non proportionnel au niveau de subvention obtenue. Ce constat peut présenter un risque sur la rentabilité financière des projets sur le long terme, surtout si l’évolution prévue des tarifs appliqués, ne permet pas de rejoindre un niveau de tarif cohérent avec la réalité – même subventionnée – des coûts de production de l’électricité.

- Par ailleurs, dans certains cas, plus rares, la subvention acquise n’a pas été utilisée pour favoriser des tarifs plus attractifs mais simplement pour soulager l’investissement initial, sans questionnement sur les indicateurs de performance économique des modèles, posant la question de la pertinence même de la subvention dans ces cas-là.

- Les programmes de financement en fonds non remboursables doivent donc, en parallèle de leurs exigences sur les impacts délivrés et de l’adéquation avec les prérogatives du cadre réglementaire qui prévoit un apport en subvention par le gouvernement Malagasy jusqu’à hauteur maximale de 70 % des CAPEX, s’assurer que les projets qu’ils financent actionnent bien l’instrument qu’est la subvention, pour renforcer l’attractivité des projets, mais sans les dénuder de leurs atouts pour le long terme.

- En conclusion, si les subventions sont indispensables dans le secteur de l’électrification rurale et particulièrement des mini-réseaux, elles doivent être bien calibrées et attribuées en cohérence avec les bénéfices possibles sur les projets (ex : diminution des tarifs de vente de l’électricité, diminution des profils de risques et augmentation de l’attractivité des investisseurs privés) et la capacité des projets à bâtir des modèles autosuffisants sur le long terme (adéquation des niveaux tarifaires avec les prérequis de génération de revenus des modèles économiques). Par ailleurs, les partenaires financiers et les autorités publiques à Madagascar doivent de saisir de ces enjeux et soutenir l’application de subventions réellement utiles, ceci afin de garantir un marché sain et une évolution positive, constructive et compétitive du secteur.

- Les structures tarifaires les plus performantes et les mieux appropriées par les consommateurs sont les structures tarifaires multiples, qui incluent une vente de l’électricité au kWh (pas de forfait) et des tarifs de redevances fixes mensuelles ou annuelles – en plus des tarifs de raccordement unique. Si le détail du nombre et des catégories de tarifs au kWh ou en redevance fixe n’est pas caractérisable avec les informations disponibles, il semble indispensable de trouver un équilibre entre ces composantes. Par ailleurs le niveau de tarif appliqué joue considérablement sur l’acceptation par la communauté bénéficiaire et donc sur le niveau de revenus possible : un tarif de vente au kWh supérieur au coût d’un kWh produit par une solution alternative existante comme le diesel n’est pas favorable pour le projet. Les développeurs et opérateurs de mini-réseaux sont donc encouragés à élaborer des schémas de tarification multiple, diversifiant les sources de revenus et lisant les variations des coûts de production. Ils évitent les tarifs simples et trop élevés, non compétitifs.

- En guise de pistes d’amélioration des démarches auprès des consommateurs, les opérateurs peuvent développer des outils ou des initiatives d’accompagnement à l’utilisation productive de l’énergie, notamment par la mise en place de démarches d’accompagnement aux entrepreneurs locaux pour la création ou le renforcement de leurs activités professionnelles.

- Pour renforcer les profils de revenus des projets de mini-réseaux, il est également possible d’introduire, en complément de la vente d’électricité, la vente de produits ou services complémentaires (ex: vente de kits solaires pour les usages mobiles, vente de matériels électriques, service d’assistance à l’installation électrique intérieure, etc.).
Bien souvent, la vision des solutions d’accès à l’électricité en zone rurale et isolée que se font les acteurs de l’industrie au sens large se concentre sur la fourniture de services de base au plus grand nombre de bénéficiaires. Pour appuyer cette vision, l’indicateur clef choisi par les bailleurs et programmes de financements est le nombre de nouvelles connexions créées (indicateur repris dans les Objectifs de Développement Durable). Un paradoxe lorsqu’on met en perspective le profil de risque, notamment financier, que représentent les modèles de mini-réseaux. Si l’analyse de la demande énergétique au niveau local constitue un facteur clef de réussite des projets, c’est parce qu’il est nécessaire de créer un portfolio de consommateurs variés mais complémentaires sur le mini-réseau ; la sécurisation des recouvrements et des revenus tient notamment au fait que les développeurs de mini-réseaux tentent de cibler des zones à fort potentiel de développement économique, notamment pour palier le risque inhérent aux profils de faible consommation, donc du plus grand nombre d’usagers que sont les ménages et les usagers résidentiels. La logique de développement de projets de mini-réseaux repose donc sur la capacité du développeur ou de l’opérateur à combiner une demande d’ancrage, constituée d’opérateurs économiques actifs et stables, avec une demande d’usagers productifs constituée d’entrepreneurs locaux structurés mais de taille moyenne, et une demande de nombreux petits consommateurs incluant à la fois ménages et services publics. C’est bien la combinaison de ces 3 types de consommateurs qui permet un équilibre des modèles économiques de mini-réseaux. Dans ce contexte, le plus grand nombre ne peut pas être la seule cible : seule la combinaison de plusieurs cibles, dont certaines économiquement porteuses, peut s’avérer pertinente dans une réponse socialement, politiquement et financièrement acceptable.

4.5 SUIVI ET EVALUATION DES IMPACTS

Si classiquement, la « performance » mesure à la fois l’adéquation entre les objectifs stratégiques initialement définis et les résultats effectivement atteints (efficacité) et l’adéquation entre les résultats et les moyens employés (efficience), la Performance Globale se présente comme une démarche englobant non seulement la dimension de création de valeur ajoutée, mais aussi des responsabilités sociales et environnementales.

La Performance Globale ne se limite donc pas à un indicateur unique ou à une approche purement quantitative : elle se comprend comme le fruit d’un processus qualitatif d’articulation des composantes du système organisationnel et des actions individuelles. Cette démarche permet notamment d’introduire les notions de rentabilités environnementale et sociale, en addition de la rentabilité économique usuelle.

29 Nations Unies, Objectifs de Développement Durable : ODD No.7 Energie Propre et d’un Coût Abordable
30 Michel Capron et Françoise Quairel, Évaluer les stratégies de développement durable des entreprises : l’utopie mobilisatrice de la performance globale, 2006
Dans leurs enjeux à délivrer des services d’accès à l’électricité en zones rurales tout en respectant des impératifs économiques, d’adéquation avec la demande, d’intégration multipartite, et de préservation des ressources naturelles, les projets de mini-réseaux sont confrontés à une démarche proactive de Performance Globale, souvent difficile à élaborer et mettre en œuvre. Pourtant, travailler sur les 3 axes de rentabilité identifiés, économique, environnementale et sociale, est indispensable pour satisfaire l’exigence des parties ; c’est notamment grâce à cette démarche de Performance Globale que les projets peuvent espérer satisfaire au mieux les bénéficiaires au niveau local, et les autres parties prenantes (autorités concédantes, partenaires techniques et financiers). C’est aussi grâce à cette démarche que les acteurs du secteur pourront confirmer leur volonté à s’investir davantage pour banaliser les projets de mini-réseaux à Madagascar.

La plupart des acteurs des projets enquêtés ne sont pas sensibilisés ou conscientisés à la pratique du suivi-évaluation des impacts. Ils ne disposent donc pas ou peu d’éléments exploitables pour conduire une amélioration continue de leurs pratiques. Une démarche appropriée de suivi et évaluation nécessiterait la quantification et la qualification de valeurs de base (i.e. « Baseline »), déterminées avant la mise en œuvre des projets afin de permettre une classification des impacts mesurés au cours des projets. La baseline peut être construite sur leurs différents aspects, en suivant la base de la Performance Globale comme présentée dans la figure ci-dessus : aspects sociétaux (ex : intégration et satisfaction des parties prenantes), aspects sociaux (ex : conditions d’éducation ou d’accès à l’information), aspects économiques (ex : pouvoir d’achat des usagers, nombre d’activités génératrices de revenus, etc.) et aspects environnementaux (ex : émissions de CO₂). Une démarche de suivi-évaluation permettrait d’illustrer de manière factuelle les évolutions acquises au cours des projets et pourrait être utilisée pour mener des plaidoyers en faveur du secteur, convaincre des investisseurs et sensibiliser de futures communes rurales, candidates pour leur électrification.

Malgré l’absence de rapports sur l’évolution des impacts au niveau local, il semble que le niveau de satisfaction des bénéficiaires soit étroitement lié à la qualité des services fournis (pas de coupures ni de délestage, capacité à répondre à la demande). L’augmentation de la satisfaction entraine celle des taux de pénétration et la baisse des déconnexions. Les projets les plus stimulants sont principalement les projets hydroélectriques et solaires car, si on se réfère à l’évolution des taux de pénétration et aux taux de satisfaction des usagers, ils répondent aux besoins des usagers. Il est à noter qu’au niveau de tous les sites, au fur et à mesure des années d’exploitation, il y a augmentation de la demande en électricité ; aussi, pour être satisfaits, les projets doivent pouvoir faire correspondre l’énergie disponible et la demande. La conception initiale du projet, principalement en termes de dimensionnement, de choix technologique, et les mécanismes de gestion semblent être de facteurs clefs pour garantir une continuité et une qualité de service.

Par ailleurs, il convient de sensibiliser les agences ministérielles, et en particulier l’ADER, à l’importance et l’utilité de renforcer l’action et l’implication des opérateurs dans leurs démarches de suivi et évaluation. Les résultats qui en découlent permettront de mieux accompagner les projets en cours et concevoir les prochains. Aujourd’hui, les rapports annuels d’activité recueillis par l’ADER sont souvent partiellement remplis par les opérateurs et ne comportent pas de section spécifique sur l’évolution des impacts du projet. L’ADER n’est donc pas en mesure d’intervenir ou de proposer des mesures d’amélioration aux opérateurs.